

République Algérienne Démocratique et populaire

Ministère de l'Enseignement et de la recherche scientifique

Université Abderrahmane Mira-Bejaïa-

Faculté de technologie

Département de Génie Civil

Mémoire de fin du Cycle

En vue d'obtention du diplôme de Master en génie civil

Option: Structures

Thème: Etude d'un bâtiment(R+9+Sous-sol)

À usage multiple sis à la ville de Bejaïa

Présenté par :

Encadré par :

Melle BOUHAMI Sara

Mr OURTEMACHE Mourad

Melle SOUFI Radia

Membres de jury:

Mme SGHIR Wassila

Mr KERNOU Nassim

Année universitaire : 2018/2019

Remerciement

Avant tout, nous tenons à remercier DIEU le tout puissant, le miséricordieux qui nous a donné la force et la patience pour mener à terme ce travail.

Nous remercions nos cher parents ainsi que nos familles qui nous ont toujours encouragés et soutenu durant toutes nos études.

Nos plus vifs remerciements vont aussi à notre promoteur

M^r ourtemache de nous avoir guidé, suivi et accordé un grand intérêt a notre travail et pour la patience dont il a fait part à notre égard, pour son aide précieux et pour tout le savoir qu'il nous a transmis.

Merci à vous, membres de jury qui nous feront l'honneur de jugé ce travail.

Notre sincère gratitude à tous ceux qui ont participé de près ou de loin à la réalisation de ce travail.

Dédicaces

«Le secret du bonheur est de faire ce que tu aimes, le secret de la réussite est d'aimer ce que tu faire»

Je dédie ce travail

A mes chers parents qui ont toujours été auprès de moi

A mes chers frères

A tous mes amis et tous ceux qui me sont chers

A mon binôme Radia et sa famille

A toute la promotion de génie civil 2019

Dédicaces

Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce mémoire :

A mes très chers parents qui ont toujours été là pour moi, et qui m'ont donné un magnifique modèle de labeur et de persévérance. J'espère qu'ils trouveront dans ce travail et dans ma réussite toute ma reconnaissance.

A toutes ma familles, mes oncles et tantes

Amon cher fiancée : Islem

A ma cher sœur : Lilia

A tous mes amis, de la promotion

A ma binôme (Bouhami Sara) et à toute sa famille.

Table des matières

Chapitre I : Généralités

I.2.Introduction
.2. Aperçu générale du site
I.2.1. Situation géographique
I.2.2. Aspect géophysique
I.2.3. Aspect géologique
I.2.4.état de terrain d'assise2
I.2.5. Donnée géotechniques du site2
I.2.5.1. Stabilité des parois après terrassement
I.2.5.2. Conclusion et recommandation
I.3 Caractéristique de la structure4
1.3.1 Caractéristique géométrique 4 1.4. Choix du contreventement 4 1.5. Règlement et norme utilisée 4 1.6. Actions et sollicitations 4 1.6.1 les actions 4 1.6.1.1 actions verticales 4 1.6.1.2 les actions horizontales 5 1.6.2. Les sollicitations 5 1.7. Caractéristique des matériaux 5 1.7.1. Le béton 5 1.7.1.2. Résistance caractéristique du béton 6 1.8.1. Les contraintes de calcul d'aciers 8
Chapitre II : pré dimensionnement et étude des éléments secondaire
Introduction10
II -1-Pré-dimensionnement des éléments secondaire
II -2-Pré-dimensionnement des éléments principaux14

II -2-1-Pré-dimensionnement des poutres	15
II -2-2-Pré-dimensionnement des voiles	15
II -2-3-Pré-dimensionnement des poteaux	
II -3-Evaluation des charges permanentes et surcharges d'exploitations	
II -4-Descente des charges	19
II-4 Pré dimensionnement des poteaux à L'ELU	19
II-4-1 Calcul du poteau de la cage d'escalier «C4»	
II-4-2 Calcul du poteau centrale « B2 »	
II-5 Vérification du poteau « C4 »	
II-6 étude du plancher	
II.6. 1.Planchers à corps creux :	
II.6. 2.planchers en dalle pleine :	34
II-7 Etudes des escaliers	39
II.8.Etude de la poutre palière	41
II.9. Etude de la poutre de chainage	44
II.10.Etude de l'ascenseur	46
II.11.Étude de l'acrotère	50
II.11.1.Hypothèses de calcul	51
II.11.2Évaluation des charges et surcharges	51
II.11.3.Calcul des sollicitations Chapitre III : étude dynamique	
III .1 Introduction	55
III .2 Modélisation	
III .3.Disposition des voiles de contreventement	56
III .4 La méthode de calcul utilisée	
III .4.1 Méthode Dynamique Modale Spectrale (RPA99V2003 article 4.3)	56
III .5. Calcul de la force sismique V statique	57
III .6. Mode de vibration et taux de participation des masses	59
III .7. Vérification des résultats vis-à-vis du RPA 99/Version2003	61
III .7. 1. Vérification de la résultante des forces	61
III .7. 2. Vérification de l'effort normal réduit	61
III .7. 3. Justification de l'interaction (voiles-portiques)	62
III .7. 4. Vérification vis-à-vis des déplacements de niveaux	63
III .7. 5. Justification vis à vis de l'effet P - Δ	64
III.7. 6. Conclusion	65

Chapitre IV : étude des éléments structuraux

IV-1 Introduction	66
IV-2 Etude des poutres	
IV-2-1Recommandations du RPA99V2003	66
IV-2-2 Calcul de ferraillage	67
IV-2-3 Vérification du RPA	68
IV-2-4 Vérifications à L'ELU	69
IV-2-5 Vérifications à L'ELS	
IV-2-6 Schémas de ferraillage des poutres	71
IV-3 Etude des poteaux	72
IV-3-1Les recommandations du RPA 99V2003	72
IV-3-2Ferraillage des poteaux	74
IV-3-3 Vérifications nécessaire	77
IV-3-4Schémas de ferraillage des poteaux	82
IV-4 Etude des voiles	83
IV-4-1Introduction	83
IV-4-2 Les recommandations du RPA99	
IV-4-2 Exemple de calcul du voile Vx1 et Vx2	83
Chapitre V : étude des fondations	
Introduction	89
V.1. Choix du type des fondations	89
V.2. Combinaisons d'actions à considérer	89
V.3. Etude du radier	89
V.3.1.Pré dimensionnement	89
V.3.2 Les vérifications nécessaires	90
V.3.3 La dalle du radier	94
V.3.4. Ferraillage des débords	
V .4.Etude des nervures	97
V.4.1 Les sollicitations sur les nervures	97
V.4.2. Ferraillage	99
V.4.3.Armatures de peau	
V .5. Etude du voile périphérique	102

Liste des tableaux

Chapitre I : Généralités	
Tableau I. 1 les valeur de $ heta$ correspondantaladuréed'application	8
Chapitre II : pré dimensionnement et étude des éléments secondaire	
Tableau II. 1. résumé de calcul des dalles	12
Tableau II. 2. dimensions des dalles	12
Tableau II.3.pré dimensionnement des poutres et vérifications du RPA	15
Tableau II. 4. Les dimensions préalable des poteaux	16
Tableau II. 5. Évaluation des charges et surcharges pour le plancher à corps creux	16
Tableau II.6. Évaluation des charges et surcharges pour le plancher à corps creux terrasse accessible	17
Tableau II.7. Évaluation des charges et surcharges pour le plancher à corps creux terrasse inaccessible	17
Tableau II.8. Évaluation des charges et surcharges pour le plancher en dalle pleine terrasse accessible	17
Tableau II.9. Évaluation des charges et surcharges pour le plancher en dalle pleine étage courant	18
Tableau II.10. Évaluation des charges et surcharges pour le palier de repos	18
Tableau II.11. Évaluation des charges et surcharges pour la volée	19
Tableau II.12. Évaluation des charges et surcharges pour le Murs extérieur en double. brique creuse	-
Tableau II.13. charges et surcharges reprise parle poteau 'C4'	21
Tableau II.14. résultats de la descente de charge pour le poteau 'C4'	22
Tableau II.15. résultats de la descente de charge pour le poteau 'C4'	22
Tableau II.16.résultats de la vérification du poteau p1 à la compression simple	23
Tableau II. 17. Tableau récapitulatif des vérifications au flambement	24
Tableau II. 18 . Tableau vérification de RPA	25
Tableau II.19. Récapitulatif des dimensions des différents éléments	25
Tableau II. 20. les différents types de poutrelles	26

Tableau II. 21. tableau des charges revenant aux poutrelles	27
Tableau II.22.tableau des sollicitations maximales de la poutrelle T1 des différents niveaux	28
Tableau II.23. tableau des sollicitations maximales de la poutrelle T2 des différents niveaux	29
Tableau II. 24. tableau récapitulatif des efforts maximaux	29
Tableau II. 25. calcul du ferraillage longitudinal des différents niveaux	33
Tableau II.26. Vérification nécessaire à l'ELU	33
Tableau II.27. Vérification des contraintes à l'ELS	33
Tableau II.28. tableau des sollicitations de la dalle 14	35
Tableau II. 29. tableau de calcul des moments	35
Tableau II.30.tableau des sollicitations de la dalle 14	36
Tableau II. 31. tableau des vérifications de la dalle 14 à l'ELS	37
Tableau II. 32. tableau des vérifications de la flèche de la dalle D14	37
Tableau II. 33. tableau de calcul de ferraillages et des vérifications des dalles 8 et 13	37
Tableau II.34. tableau de calcul de ferraillage de la dalle 6	38
Tableau II. 35. tableau de vérifications de la dalle D6 à l'ELU	38
Tableau II.36. tableau de vérifications de la dalle 6 à l'ELS	38
Tableau II.37. tableau de vérification des conditions de la flèche	39
Tableau II.38. tableau de la vérification de la flèche de la dalle 6	39
Tableau II.39. tableau de calcul de ferraillage de l'escalier RDC	40
Tableau II.40 . Tableau de vérification des contraintes de l'escalier RDC	40
Tableau II.41. tableau de vérification de la flèche de l'escalier	41
Tableau II.42 . Tableau de calcul de ferraillage de la poutre palière	42
Tableau II.43. Vérifications des contraintes à l'ELS	43
Tableau II.44 .Le ferraillage de la poutre de chainage	45
Tableau II.45. vérification des contraintes	45
Tableau II.46.Le ferraillage de dalle	47
Tableau II.47.La vérification des contraintes	47
Tableau II. 48. Le ferraillage de la dalle	49
Tableau II.49. Vérification des contraintes	50
Tableau II.50. Les charges verticales	51

Tableau II.51Résumé de calcule de centre de gravité 51
Tableau II.52. Différentes combinaisons à utiliser 52
Tableau II. 53. Le ferraillage de l'acrotère 53
Tableau II. 54. calcul de la position de l'axe neutre 54
Chapitre III : étude dynamique
Tableau III. 1. Dimensions finales des éléments structuraux 56
Tableau III.2. valeurs des pénalités 59
Tableau III. 3. période et taux de participation massique de la structure 60
Tableau III.4. Vérification de la résultante des forces sismiques à la base 61
Tableau III.5. Vérification de l'effort normal réduit dans les poteaux après le redimensionnement 62
Tableau III.6. L'interaction sous charges vertical 63
Tableau III.7. L'interaction sous charges horizontal 63
Tableau III.8. Vérification des déplacements relatifs 64
Tableau III.9. Vérification de l'effet P-Delta65
Chapitre IV :étude des éléments structuraux
Tableau IV.1. Les sollicitations maximales dans les poutres principales 67
Tableau IV.2.Les sollicitations maximales dans les poutres secondaires 68
Tableau IV.3. Le ferraillage des poutres principales 68
Tableau IV.4. Le ferraillage des poutres secondaires 68
Tableau IV.5. Vérification des contraintes tangentielles 70
Tableau IV. 6. Vérification de l'état limite de compression du béton 70
Tableau IV. 7 Vérification des conditions de la flèche des poutres 71
Tableau IV.8. Armatures longitudinales minimales et maximales dans les poteaux 73
Tableau IV.9. Calcul des armatures longitudinales 76
Tableau IV.10. Sollicitations et ferraillage des poteaux
Tableau IV.11. Vérification au flambement des poteaux
Tableau IV.12. Vérification des contraintes dans le béton. 79
Tableau IV. 13. Vérification des contraintes de cisaillement 79
Tableau IV.14. Dimensions de la zone nodale 80
Tableau IV.15. Moments résistant dans les poteaux 81

Tableau IV.16. Moments résistants dans les poutres principales	81
Tableau IV.17. Moments résistants dans les poutres secondaires.	81
Tableau IV.18. Vérification des zones nodales dans les poutres principales	82
Tableau IV.19. Vérification des zones nodales dans les poutres secondaires	82
Tableau IV. 20. sollicitations dans les voiles Vx_1 et Vx_2	84
Tableau IV.21. Sollicitations et ferraillage des voiles VX1 et VX2	85
Tableau IV.22.sollicitations et ferraillage des voiles VX3 et VX4	86
Tableau IV. 23. sollicitations et ferraillage des voiles VY1	87
Tableau IV.24. sollicitations et ferraillage des voiles VY2	87
Tableau IV.25. sollicitations et ferraillage des voiles VY3	88
Tableau IV.26 .sollicitations et ferraillage des voiles VY4	88
Chapitre V : étude des fondations	
Tableau V 1.Ferraillage du radier	94
Tableau V. 2. Vérification des contraintes du radier à l'ELS	95
Tableau V. 3. Calcul des armatures à l'ELS	95
Tableau V.4.vérification des contraintes à l'ELS âpres augmentation du ferraillage	96
Tableau V.5.Résumé des résultats du ferraillage	96
Tableau V.6. Vérification des contraintes de débord à l'ELS après augmentation du ferr	aillage96
Tableau V. 7. Sollicitations de la nervure dans le sens X-X à l'ELU	99
Tableau V. 8. Sollicitations de la nervure dans le sens X-X à l'ELS	99
Tableau V. 9. Sollicitations de la nervure dans le sens y-y à l'ELU	99
Tableau V.10. Sollicitations de la nervure dans le sens y-y à l'ELS	99
Tableau V.11. Résumé des résultats de ferraillage des nervures	100
Tableau V.12. Résumé des résultats de vérification des contraintes	101
Tableau V.13. Résumé des résultats de recalcule de ferraillage à l'ELS	101
Tableau V.14. Tableau de ferraillage du voile périphériqu	103
Tableau V.15. résultats de calcul et vérification à l'ELS du voile périphérique	104
Tableau V.16. résultats de calcul et vérification à l'ELS du voile périphérique	104
Tableau V.17. résultats de vérifications après augmentation du ferraillage	104

Liste des figures

Chapitre I.	
Figure I. 1. situation du site de projet	1
Figure I. 2 . carte géologique de la région de béjaia	2
Figure I.3. Vue du terrain étudié	2
Figure I. 4. implantation des éssais géotechnique	3
Figure 5. diagramme des contraintes du béton	6
Figure I. 6 diagramme des contraintes limite du béton	7
Figure I.7: diagramme contrainte de déformation de l'acier	8
Chapitre II.	
Figure II.1.coupe verticale du plancher en corps creux	10
Figure II.2. La Disposition des poutrelles pour RDC et étage 1et 2	11
Figure II.3. Schéma représentatif de l'escalier11	
Figure II . 4 . la 1 ^{ére} et 2 ^{éme} volée du RDC	13
Figure II . 5 . la 3 ^{ére} et 4 ^{éme} volée du RDC	13
Figure II.6. Schéma statique des volées 1 et 2 du RDC	14
Figure II.7. Schéma statique des volées 3 et 4 du RD	14
Figure II. 8. schéma statique d'escalier de l'étage 1	14
Figure II.9. Schéma statique des étages courants et étage 2	15
Figure II.10 .Schéma d'un voile	15
Figure II.11. la section du poteau	16
Figure II. 12 . la surface afférente du poteau « C4 » de la terrasse inaccessible	20
Figure II.13. la surface afférente du poteau « C4 » de l'étage 9	20
Figure II. 14. la surface afférente du poteau « C4 » pour les étages de 8 à 2	20
Figure II.15 .la surface afférente du poteau'« C4 » pour le sous sol	20
Figure II.16 : la surface afférente du poteau« C4 »' pour l'étage 1 et RDC	20
Figure II.17. schéma statique de la poutrelle T1	27
Figure II.18. Ferraillage des poutrelles de l'RDC	34
Figure II.19.Ferraillage de la dalle de compression	34
Figure II.20. Dalle sur 2 appuis(D14)	35
Figure II 21 Dalle sur 4 appuis(D8)	37

Figure II.22 .Dalle sur 4 appuis(D13)
Figure II.23.Dalle sur 3 appuis(D6)
Figure II.24.schéma statique de la dalle (D6)
Figure II.25. schéma représentatif Du RDC
Figure II.26.schéma statique du RDC
Figure II.27 coupe pour calcul des moments
Figure II.28. Schéma de ferraillage de l'escalier
Figure II.29. Schéma statique de la poutre palière
Figure II. 30. Ferraillage de la poutre palière
Figure II. 31. Schéma statique de la poutre de chainage
Figure II.32. Ferraillage de la poutre de chainage
Figure II. 33. schéma représentatif de l'ascenseur
Figure II. 34. Illustration de la surface d'impact
Figure II.35. Ferraillage de dalles au dessous de l'ascenseur et dalle sale machine50
Figure II.36.coupe A_A du panneau de dalle salle machine
Figure II.37. Les dimensions de l'acrotère
Figure II. 38. schémas statique de l'acrotère
Figure II. 39. Schéma de ferraillage de l'acrotère
Chapitre III.
Figure III.1.Vu en 3D de la structure modélisé avec le logiciel ETABS 1655
Figure III. 2 .la disposition des voiles réaliser avec le logiciel56
Figure III.3. Spectre de réponse
Figure III.4.1er mode de vibration selon l'axe y-y (translation)
Figure III.5.2éme mode de vibration selon l'axe x-x(translation)
Chapitre IV.
Figure IV. 1. Schéma de dispositions constructives avec la coupe en travée et appui de la poutr
Principale et secondaire de l'étage courant non associée aux voiles72
Figure IV.2.zone nodale73
Figure IV. 3. La zone nodale80
Figure IV.4. La répartition des moments sur la zone nodale80
Figure IV.5.Schémas de ferraillage des poteaux de RDC et étage 1+282
Figure IV.6. zone courante et zone tendue dans le voile84
Chapitre V

Figure V.1.Zone de contact du poteau	90
Figure V. 2. schéma représentatif du débord du radier	92
Figure V. 3.le panneau le plus sollicité	94
Figure V4Schéma statique du débord	96
Figure V. 5. Schéma des lignes de ruptures	97
Figure V.6. schéma de la nervure la plus sollicité selon X-X	98
Figure V.7 . Schéma de la nervure la plus sollicité selon y-y	98
Figure V.8 .section de la nervure à ferrailler	99
Figure V. 9 . Schéma de ferraillage de la nervure sens X-X	
Figure V.10 . Poussé des terres sur le mur périphérique	102

Symboles et Notations:

A: Aire d'une section d'acier.

A': Section d'aciers comprimées.

Aser: Section d'aciers pour l'ELS.

Au: Section d'aciers pour l'ELU.

A_r: Section d'un cours d'armature transversal ou d'âme.

ELS: Etat limite de service.

ELU: Etat limite ultime.

B: Aire d'une section de béton.

D: Diamètre.

E: Module d'élasticité longitudinale, séisme.

E_h: Module de déformation longitudinal du béton.

E_j: Module d'élasticité instantanée.

E_s: Module de d'élasticité de l'acier.

F: Force ou action générale.

G: Action permanente.

I: Moment d'inertie.

L: Longueur ou portée.

M: Moment en général.

Mu: Moment de calcul ultime.

M_{ser}: Moment de calcul de service.

N: Effort normal.

Nser: Effort normal en service.

 N_u : Effort normal de service.

V: Effort tranchant.

P: Charge concentrée appliquée (ELS ou ELU). **Q**: Action ou charge variable. S: Section. **Br**: Section réduite. M_a: Moment sur appui. Mt: Moment en travée. **a**: Une dimension transversale. **b:** Une dimension longitudinale. **b**₀ : Epaisseur brute de l'arme d'une section. **d:** Hauteur utile. e: Excentricité, épaisseur. **f**: Flèche. f_e: Limite d'élasticité de l'acier. **Fcj**: Résistance caractéristique à la compression du béton âgé de j jours. Ftj: Résistance caractéristique de la traction du béton âgé de j jour. f_{c28} et f_{t28} Resistance calculé à 28 jours. **h**₀: Epaisseur d'une membrure de béton. h: Hauteur totale d'une section de béton armé. i: Rayon de giration d'une section. **j** : Nombre de jours. k: Coefficient en général 1: Longueur ou porté If: Longueur de flambement. **Is**: Longueur de scellement. **St**: Espacement des armatures. x: Coordonnée en général.

- y: Coordonnée.
- z: Coordonnée d'altitude, bras de levier.
- α: Angle en général, coefficient.
- γ : Coefficient
- ε: Déformation relative.
- θ : Coefficient.
- **λ**: Elancement.
- **μ:** Coefficient.
- υ : Coefficient de poison.
- **ρ**: Rapport de deux dimensions.
- **σ**: Contrainte normale.
- σ_b: Contrainte de compression du béton.
- σ_s : Contrainte de compression dans l'acier.
- σ_i : Contrainte de traction.
- **τ:** Contrainte tangente

Introduction Générale

La première structure en béton armé a été conçu en 1885 par l'ingénieur français Joseph Lombot (J.-L. Bosc, J.-M. Chauveau et al. *Joseph Monier et la naissance du ciment armé*, éd. du Linteau, 182 p), depuis cette date ce matériau c'est fortement répondu dans le domaine de construction.

Cependant, avant 1850 la construction des ouvrages ne répondait a aucun critère spécifique ce qui pouvait avoir des conséquences désastreuses, ensuite cette problématique a encouragé les ingénieurs à s'intéresser à la théorie de la résistance des matériaux et c'est ainsi que un règlement avec calcul en béton armé est apparu ,cet article a pour objectif d'expliquer les bases des calcul concernant le béton armé y notamment développées de calcul vis-à-vis des états limites ultimes de résistance(ELU), des états limites de services (ELS).

Depuis le séisme de BOUMERDES en 2003 le Règlement Parasismique Algérien a été modifié vue le regain d'intérêt pour les constructions parasismiques.

Dans le cadre de ce projet, nous avons procédé au calcul d'un bâtiment de (R+9+SOUS SOL à usage commerciale +service+ habitation) sis EDIMCO (willaya de BEJAIA) d'une zone sismique moyenne.

Ce mémoire est composé de cinq chapitres, ou les généralités sur les caractéristiques de notre ouvrage ainsi que les matériaux et le site sont abordé dans un premier chapitre, Un pré dimensionnement des éléments de la superstructure et l'étude des élément secondaires sont exposés au deuxième chapitre, dans le troisième chapitre l'étude dynamique sera établir dans le but déterminer le comportement idéal de notre projet et tirer toutes les sollicitations qui permettra d'effectuer le ferraillage des élément structuraux dans le quatrième chapitre, le cinquième chapitre de ce travail est réservé à l'étude de l'infrastructure.

Enfin, une conclusion générale des principaux résultats obtenus dans ce travail.

Chapitre I

Généralités

I.1. Introduction

Dans ce chapitre on fera une reconnaissance des caractéristiques géométrique, de la structure et des caractéristiques mécanique des matériaux utilisée dans la réalisation de notre projet, pour que notre étude génie civil soit bien faite.

I.2. Aperçu générale du site

I.2.1. Situation géographique

Le projet à étudier est un R+9 + sous-sol et terrasse accessible et autre inaccessible, d'une forme irrégulière.

Ce projet fait partie de la promotion immobilière $\ll résidance zhira \gg$ sise à l'est de la cité édimco en face l'hôtel zéphire dans la ville de Bejaia.

Destiné à usage, parking au niveau sous-sol, et commercial au niveau RDC, service au niveau 1^{er} et 2 ^{éme} étages, et d'habitation au étages supérieures.

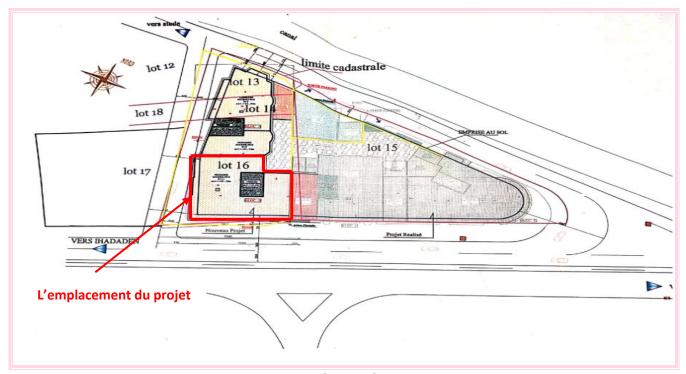


Fig. I. 1: situation du site de projet

I.2.2. Aspect géophysique

Le projet sera réalisé dans la ville de Bejaia, selon le règlement parasismique algérien (R.P.A), une zone de moyenne sismicité IIa

L'ouvrage est classé d'après les règles parasismiques algériennes (RPA99) dans le groupe 2 ayant une importance moyenne.

I.2.3. Aspect géologique

D'après la carte géologique 1/500 000^e de la région de Bejaia, le sol constituant le terrain est formé d'alluvions anciens du niveau inferieurs.

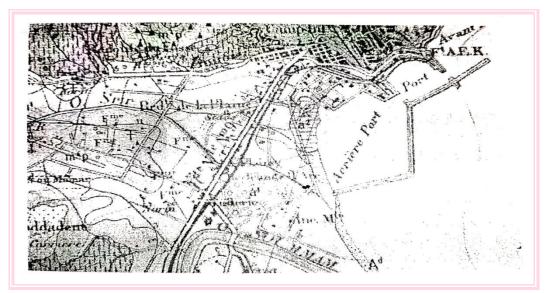


Fig. I. 2 : carte géologique de la région de béjaia

Le terrain est composé essentiellement d'alluvion de oued Seghir, on y rencontre des limons, des sables ainsi que des galets enrobé dans des matrices argileuses marneuses.

Par ailleurs des marnes compactes et plastiques sont abondantes en profondeur.

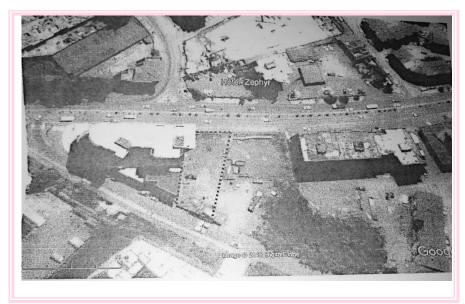


Fig. I. 3: Vue du terrain étudié

I.2.4. état de terrain d'assise

Suite aux visites sur site des géotechniciens, ils ont constaté un terrain plat et nu de toute construction, il est à environ 16m du lit mineur de oued seghir (actuellement canalisé)

I.2.5. Donnée géotechniques du site

I.2.5.1. Stabilité des parois après terrassement

Il est question dans ce projet de réaliser des immeubles avec sous-sol, avec un fond de fouille à -4.00m par rapport à la surface du terrain.

On aura par conséquence, des parois de 4m de hauteur, par ailleurs et selon les résultats des essais effectuée, la couche superficielle allant jusqu'à 3m d'épaisseur environ, est de faible cohésion ($< 0.3 \ bar \ et \ \varphi < 20^\circ$).

A cet effet, il est recommandé de procéder au confortement de la paroi juste à la fin du terrassement et accélérer la mise en place du drainage des fondations.

I.2.5.2. Conclusion et recommandations

Le terrain de la parcelle étudiée pour recevoir cet immeuble en R+9est constitué de sols de moyenne portance.

Le terrain est plat de constitution limoneuse graveleuse peu à moyennement compacte en surface, à argileuse marneuse compacte avec passage de galets et gros sable, en profondeur. Les essais pénétromètrique dynamique et les essais pressiométriques ont relevé un sous-sol hétérogène vis-à-vis de sa résistance, qui est globalement faible au niveau des trois premiers mètres et moyenne à bonne dans la couche intermédiaire entre -3m et -8m .au-delà d 8m, les sols deviennent de plus en plus compacts.

Par rapport à leur aspect géotechnique, les sols de fondation sont caractérisés comme suit :

- La couche superficielle de remblais récents (faible compacité) est de 3.20m d'épaisseur en général.
- Le taux de travail pour un fond de fouille à -4m est de $\sigma_{adm} = 1.38 \ bars$.
- Les caractéristiques mécaniques moyenne des sols à partir de -4m : $\gamma_h = 19.8 \ kn/m^3$, $\varphi = 20 \circ et \ C = 0.3 \ bar$.
- Des eaux souterraines non agressives sont constaté au 4^{éme} mètre de profondeur
- Le site est classé en catégorie S4

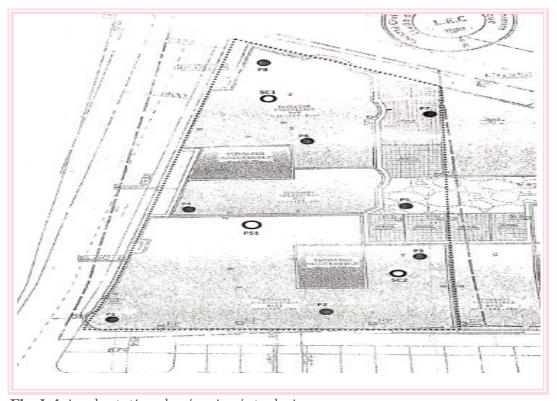


Fig. I. 4: implantation des éssais géotechnique

Aucune substance agressive vis-à-vis du béton n'est constatée dans le sous -sol.

I.3 Caractéristique de la structure

I.3.1 Caractéristique géométrique

Les caractéristiques de la structure sont :

Largeur en plan	21.55m
Longueur en plan	18.55m
Hauteur de sous-sol	3.06m
La hauteur de RDC	5.44m
La hauteur du 1 er étage	3.06m
La hauteur de 2 ^{éme} étage	4.59m
La hauteur des étages courant	
La hauteur totale	37.91m

I.4. Choix du contreventement :

L'ouvrage en question rentre dans le cadre de l'application du RPA 99 (version 2003), et que la hauteur de la structure dépasse 33 m, le Contreventement sera donc mixte assuré par des voiles et des portiques avec justification d'interaction portique-voile.

I.5. Règlement et norme utilisée

- RPA 99 /version 2003 (règlement parasismique algérien)
- BAEL 91 /modifiée 99 (béton armé aux états limites)
- CBA 93 (règles de conception et de calcul des structures en béton armé)
- DTR B.C.2.2 (charge permanente et charge d'exploitation)
- DTR B.C.2.33.1 (règle de calcul de la fondation superficielle)

I.6. Actions et sollicitations

I.6.1 les actions

Sont des forces appliquées directement a la construction, elles peuvent être sous forme, d'actions verticales ou horizontales

I.6.1.1 actions verticales

Peuvent être permanente, constante, variable, ou très peu variables

***** Les actions permanente G

Les actions permanentes ont une intensité constante ou très peu variable dans le temps, elles comprennent :

- ❖ Le poids propre de la structure
- Cloisons, revêtement, superstructures fixes
- Le poids de la poussée des terres ou les pressions des liquides
- Les déformations imposées à la structure

! Les actions variables Q

Les actions variables ont une intensité varie fréquemment d'une façon importante dans le temps, elle comporte :

- Les charges d'exploitations
- Les charges climatiques
- Les effets thermiques

I.6.1.2 les actions horizontales

Sont généralement accidentelles dues aux efforts qui se produise rarement et avec une faible durée.

actions accidentelles (FA)

Ce ont celles provenant de phénomène qui se produisant rarement et avec une courte durée d'application, on peut citer :

- les chocs
- les séismes
- les explosions
- les feux

I.6.2. Les sollicitations

Ce sont les efforts tranchant et les efforts normaux ainsi que les moments de flexion et de torsion, développée dans une structure par combinaison d'action on notera :

***** situations durables
$$\begin{cases} ELU : 1.35 G + 1.5 Q \\ ELS: G + Q \end{cases}$$

***** situations accidentelles
$$\begin{cases} G + Q + E \\ 0.8G + E \end{cases}$$

I.7. Caractéristique des matériaux

I.7.1. Le béton

Le béton est un matériau de construction composite fabriqué a partir de granulats (sables, gravions) agglomérés par un liant (ciment).

Le liant peut être qualifié d'hydraulique dosé à $350 kg/m^3$

Dosage : pour 1m^3 du béton courant, pour un rapport $\frac{E}{c}$ =0.5 est :

$$\begin{cases} 350 \ \textit{Kg de ciment} \\ 400 \textit{K de sable } (0 < \textit{Dg} < 5mm) \\ 800 \textit{K de } \begin{cases} \textit{gravion}(0 < \textit{Dg} < 15mm) \\ \textit{gravier}(0 < \textit{Dg} < 25mm) \end{cases} \\ 1751 \ \textit{d'eau de gachage} \end{cases}$$

I.7.1.2. Résistance caractéristique du béton

a. résistance à la compression

Le béton est définie par ca résistance à la compression à 28 jours noté fc_{28} elle est en fonction de l'âge du béton

• Pour des résistances $fc_{28} < 40 Mpa$

$$\mathrm{fc}_{j}=rac{\mathrm{j}}{4.76+0.83}fc_{28}$$
 $si~j~\leq 28~\mathrm{jours}$ $\mathrm{fc}_{j}=fc_{28}$ $si~j~>28~\mathrm{jours}$

• Pour des résistances $fc_{28} > 40 Mpa$

$$fc_j = \frac{j}{1.4 + 0.95} fc_{28}$$
 si $j \le 28$ jours $fc_j = fc_{28}$ si $j > 28$ jours

Pour 1m^3 de béton courant dosé à 350 kg de ciment (CPA 325) la résistance moyenne fc_{28} comprise entre 22 et 25 Mpa on prend $fc_{28}=25$ Mpa

b. résistante a la traction ft_i

$${\rm ft}_j = 0.6 + 0.06 \ {\rm fc}_j \qquad {\rm si} \quad fc_{28} \le 60 \ {\rm Mpa}$$

$${\rm ft}_j = 0.275 * {\rm fc}_j \qquad si \ {\rm ft}_{28} > 60 \ {\it Mpa}$$
 CBA93 (Art. A.1.2.1.2)

Pour notre cas j= 28 jours et $fc_{28} = 25 Mpa$ donc $ft_{28} = 2.1 Mpa$

C. contraintes limites

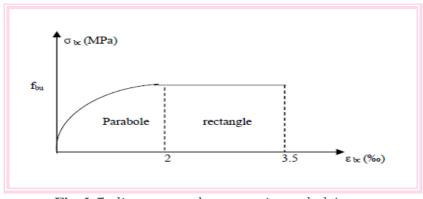


Fig. I. 5: diagramme des contraintes du béton

• état limite ultime

La contrainte ultime de compression
$$~f_{bu}=\frac{0.85~fc_{28}}{\theta*\gamma b}$$

 $\gamma_b = 1.5~pour~les~combinaisons~normales$

 $\gamma_b = 1.15$ pour les combinaisons accidentelles

$$\label{eq:decomposition} \text{Donc} \ \ f_{bu} = \begin{cases} 14.2 \text{ Mpa pour les situations durable} \\ 18.48 \text{ Mpa pour les situations accidentelle} \end{cases}$$

Chapitre I

θ: dépend de la durée d'application de chargement

θ	Durée d'application
1	> 24h
0.9	$1h \le dur\acute{e}e \le 2h$
0.85	< 1 <i>h</i>

Tabl. 1. les valeur de θ correspondant a la durée d'application

La contrainte ultime de cisaillement

La contrainte ultime de cisaillement est limiter par :

$$\tau \le \tau_{adm}$$

$$\tau_{adm} = \min \left(0.2 \frac{f_{cj}}{\gamma b} ; 5 Mpa \right)$$

$$\tau_{adm} = \min \left(0.15 \frac{f_{cj}}{\gamma b} ; 4 Mpa \right)$$

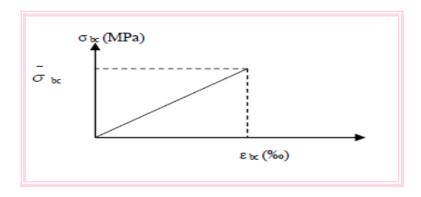


Fig. I. 6: diagramme des contraintes limite du béton

• état limite de service ELS :

La contrainte limite de service en compression de béton est limité par : $\sigma_{bc} \leq \overline{\sigma_{bc}}$

Avec
$$\overline{\sigma_{bc}} = 0.6 \text{ fc}_{28}$$
 pour notre cas $\overline{\sigma_{bc}} = 15 \text{ Mpa}$

Pour fc₂₈ = 25 Mpa
$$\begin{cases} \tau_{adm} = 3.33 \, Mpa & pour F.P.N \\ \tau_{adm} = 2.5 \, Mpa & pour F.N \end{cases}$$

d. module de déformation longitudinale

Le module de Young différé du béton dépend de la résistance caractéristique a la compression du béton

$$\begin{cases} E_{vj} = (1/3) * E_{ij} & (\text{Art A. 2. 1. 2. 1 CBA93}) \\ E_{ij} = 11000 * (f_{cj})^{1/3} & (\text{Art A. 2. 1. 2. 2 CBA93}) \end{cases}$$

Pour notre cas
$$fc_{28} = 25 \, Mpa$$
 \iff $\begin{cases} E_{i28} = 32164.20 \, \text{Mpa} \\ Ev_{28} = 10721.40 \, Mpa \end{cases}$

e. coefficient de poisson

Il sera égal:

 $v = 0 \implies$ a l'état limite ultime ELU (pour le calcul des sollicitations)

 $v = 0.2 \Rightarrow$ a l'état Limite de service ELS (pour le calcul des déformations)

f. module de déformation transversale du béton

Il sera égale a:

$$G = \frac{E_{ij}}{2*(\nu+1)} \implies \begin{cases} \nu = 0 \Longrightarrow G = 0.5 * E_{ij} \\ \nu = 0.2 \implies G = 0.42 * E_{ij} \end{cases}$$

I.8. Acier

L'acier est un alliage de fer et de carbone il est nécessaire pour reprendre les efforts de tractions et pour limiter les fissurations.

• les principales armatures utilisées

- ♣ les barres hautes adhérence de nuance FeE400 pour les armatures longitudinales
- ♣ les treillis soudé pour les hourdis des plancher à Corp creux Fe 500

I.8.1. Les contraintes de calcul d'aciers

a. état limite ultime (ELU)

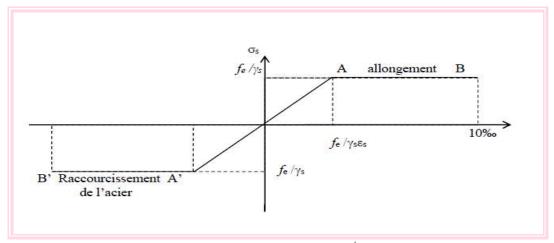


Fig. I. 7: diagramme contrainte de déformation de l'acier

Les contraintes admissibles de l'acier sont :

$$\varepsilon_{sl} = \frac{f_e}{\gamma_c * E_s}$$
 $si \ \varepsilon_s < \varepsilon_{sl}$ $donc \ \sigma s = E_s * \varepsilon_s$

$$si \ \varepsilon_{sl} \le \varepsilon_s < 10 \ ^{\circ}/_{\circ \circ} \ \ \mathrm{Donc} \ \ \sigma s = \frac{f_e}{\gamma s}$$

avec Es = 20000Mpa (module d'élasticité)

 γ_s : coefficient de sécurité

$$\gamma_s = 1$$
 cas accidentel

 $\gamma_s = 1.15 \ cas \ g\acute{e}n\acute{e}ral$

b. état limite de service ELS

On limite l'état de fissuration de l'acier comme suit

- fissuration peu nuisible : pas de limitation
- fissuration préjudiciable : $\sigma_{st} \leq \overline{\sigma_{st}} = \min(2/3 fe; 110\sqrt{\eta f_{ti}})$
- fissuration très préjudiciable : $\sigma_{st} \leq \overline{\sigma_{st}} = \min(1/2 fe; 90\sqrt{\eta f_{tj}})$ Avec η : coefficient de fissuration $\eta = 1.6$ pour les armatures haute adhérence (HA) pour notre cas :

$$\{\overline{\sigma_s} = 348 \, \text{Mpa pour situation durable} \ \overline{\sigma_s} = 400 \, \text{Mpa pour situation accidentelle}$$

Et
$$\begin{cases} \sigma_s \le 201.6 \, MPA & pour \, F.N \\ \sigma_s \le 164.97 & pour \, F.T.N \end{cases}$$

Chapitre II

Pré dimensionnement et étude des éléments secondaires

Introduction

Dans ce chapitre on va déterminer les dimensions des différents éléments de la structure afin d'être dans l'économie et d'éviter un sur dimensionnement de béton et de l'acier. On utilise pour déterminer au préalable le pré dimensionnement des éléments de notre structure les règlements suivant :

- **♣** RPA99 V2003.
- **BAEL91.**
- **♣** CBA93.

II-1 pré dimensionnement des éléments secondaires :

II-1-1 Plancher:

A) Plancher à corps creux :

Le plancher en corps creux se compose de corps creux (hourdis), poutrelles, treillis soudé, dalle de compression, son pré dimensionnement se fait par satisfaction de la condition suivante :

$$h_t \ge \frac{Lmax}{22.5}$$
 (CBA93 Art B.6.8.4.2.4)

L_{max}: longueur maximale entre nus d'appuis selon la disposition des poutrelles adoptés.

h_t: la hauteur totale du plancher.

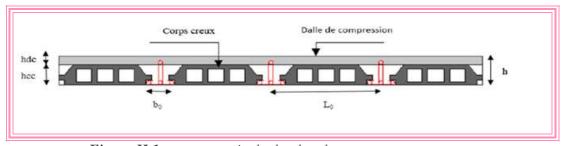


Figure II.1: coupe verticale du plancher en corps creux.

Le choix du sens de disposition des poutrelles pour notre plancher se fait par les deux critères suivant :

- ✓ Le critère de la plus petite portée : les poutrelles seront disposées parallèlement à la petite portée à fin de diminuer la flèche.
- ✓ Le critère de continuité : la disposition des poutrelles sera selon le sens où il y a plus d'appuis.
- On a disposé les poutrelles comme suit :

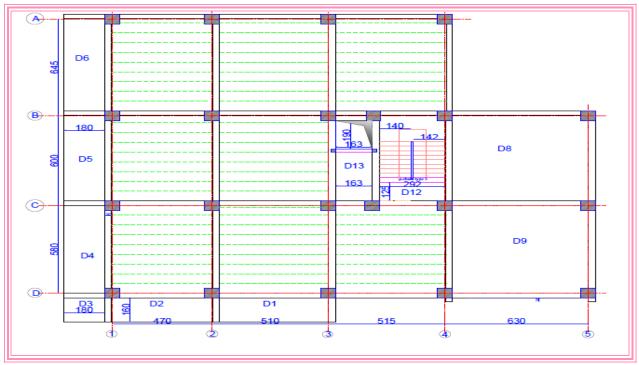


Figure II.2.: Disposition des poutrelles pour RDC et étage 1et 2

Remarque: la répartition des autres dalles des différents niveaux sera mise à (l'annexe n°02)

Selon notre disposition des poutrelles on aura :

$$L_{\text{max}} = 5,15-0,3 = 4,85 \text{m} \quad \Rightarrow h_t \ge 21,55 \text{ cm}$$

Donc on opte pour un plancher de 24cm= (20+4) cm

• Les poutrelles :

 $0.4h \le bo \le 0.8h$ donc $9.6cm \le bo \le 19.2cm$ soit

 $\frac{b-bo}{2} \le \min(\frac{lx}{2}; \frac{ly}{10})$ CBA (art A4.1.3)

 $lx = l_o - b_o \Rightarrow lx = 65 - 10 = 55cm$

ly=470-30=440cm.

Donc $b \le 65 \text{cm} \Rightarrow b = 65 \text{cm}$

Lx : distance entre nus d'appuis de deux poutrelles.

Ly : distance entre nus d'appuis de la travée minimale des poutrelles

b : largeur efficace.

b₀ : la largeur de la nervure.

B) Les planchers à dalles pleines :

Une dalle pleine est une plaque porteuse en béton armé, le pré dimensionnement de son épaisseur "e" d'épand de :

a)-Conditions du coupe-feu (CBA93) :

 $e \ge 7cm$ pour une heure de coupe-feu.

 $e \ge 11$ cm.....pour deux heure de coupe-feu.

b)-La résistance a la flexion(CBA93):

$$\frac{\ln x}{35} \le e \le \frac{\ln x}{30}$$
 Pour une dalle sur 3 ou 4 appuis avec $\rho < 0.4$.

$$\frac{\ln x}{45} \le e \le \frac{\ln x}{40}$$
 Pour une dalle sur 3 ou 4 appuis avec $\rho \ge 0.4$.

$$\frac{\ln x}{30} \le e \le \frac{\ln x}{20}$$
 Pour une dalle sur 2 appuis avec $\rho \ge 0.4$.

$$e \ge \frac{lx}{20}$$
 Pour une dalle sur 1 appui.

c)-Critère d'isolation phonique :

$e \ge 14cm$

Non applicable pour les dalles extérieurs (balcons) et les escaliers

Notre projet comporte 3 types de dalles, on expose les dalles les plus défavorables de chaque type :

Dalle 6	Lx=1,8m. Ly=6.15m. $\rho = \frac{lx}{ly} = \frac{1.8}{6.15} = 0,29 \Rightarrow \rho < 0,4$	$\begin{cases} \frac{lx}{35} \le e \le \frac{lx}{30} \\ \frac{180}{35} \le e \le \frac{180}{30} \\ 5.14 \le e \le 6 \end{cases}$	D6
Dalle 13	Lx=1.63m. Ly=3.25m. $\rho = \frac{lx}{ly} = \frac{1.63}{3.25} = 0.5 \implies \rho > 0, 4$	$\begin{cases} \frac{lx}{45} \le e \le \frac{lx}{40} \\ \frac{163}{45} \le e \le \frac{163}{40} \\ 3.62 \le e \le 4.07 \end{cases}$	3.25m E89, D13
Dalle8	Lx=5.7m. Ly=6 m. $\rho = \frac{lx}{ly} = \frac{5.7}{6} = 0.95 \implies \rho > 0, 4$	$\begin{cases} \frac{1x}{45} \le e \le \frac{1x}{40} \\ \frac{570}{45} \le e \le \frac{570}{40} \\ 12.66 \le e \le 14.25 \end{cases}$	D8
Dalle 14	Lx=1,4m. Ly=2.67 $\rho = \frac{lx}{ly} = \frac{1.4}{2.67} = 0.52 \Rightarrow \rho > 0,4$	$\begin{cases} \frac{lx}{30} \le e \le \frac{lx}{20} \\ \frac{140}{30} \le e \le \frac{140}{20} \\ 4.66 \le e \le 7 \end{cases}$	2.67m E † D14

Tableau II.1 : résumé de calcul des dalles

⇒On opte pour les épaisseurs des dalles pleines selon les critères suivant :

Critère	e (cm)	La dalle	
Coupe – feu	12	D1, D2, D3, D4, D5, D6, D7, D10, D11, D12, D13, D14, D16, D17	
Isolation phonique	15	D8, D9, D15	

<u>Tableau II.2</u>: dimensions des dalles

II-1-2 Pré dimensionnement des escaliers :

L'escalier est une construction architecturelle constituée d'une suite régulière de marches

Permettant de passer d'un niveau à un autre.

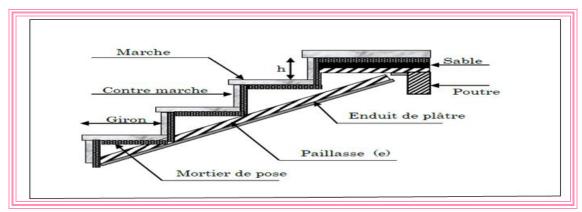


Figure II.3: schéma représentatif de l'escalier

Dans notre projet on a un seul type d'escalier, qui est un escalier droit en béton armé. Pour déterminer les dimensions des marches et des contre marche « g et h » on utilise la relation de BLONDEL : $59 \text{ cm} \le 2\text{h} + \text{g} \le 64\text{cm}$.

- la hauteur h des contremarches est entre 14 et 18 cm
- la largeur des marches (giron) est entre 25 et 32 cm

On distingue dans notre projet des cages d'escalier de différents types :

- RDC : escalier à 4 volées non identiques
- Etage 1 : escalier à 2 volée identique
- Etage 2 : escalier à 3 volées identique
- Etages courants : escalier à 2 volées identiques

Type 1 : escalier a 4 volée (RDC) :

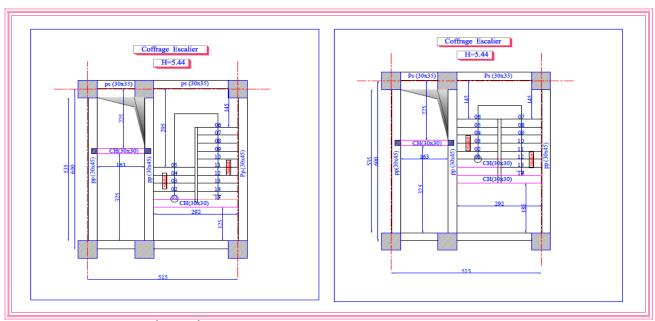
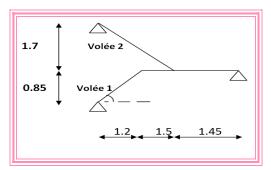




Figure II.4: la 1^{ére} et 2^{éme} volée

Figure II.5: 3ére et 4éme volée

Schéma statique des volées 1 et 2 : Schéma statique des volées 3 et 4 :

<u>Figure II.6</u>: schéma statique des volées 1 et 2 du RDC

<u>Figure II.7</u>: schéma statique des volées 3 et 4 du RDC

- ❖ On va étudiée la volée la plus défavorable (volée 2) :
- 2^{éme}volée :
- Calcul du nombre de marche et contre marche

On a: $L_0 = 270cm \ et \ H = 170 \ cm$

$$64n^2 - (64+2H+L_0)*n + 2H = 0 \implies 64n^2 - (64+2*170+270)*n + 2*170 = 0$$

$$64n^2 - 674n + 340 = 0$$

D'âpres la résolution de cette équation :

Le nombre de contre marche n=10; Le nombre de marche n-1=9

• Calcul du giron (g) et de la hauteur d'une contre marche (h)

$$g = \frac{L_0}{n-1} = \frac{270}{9} = 30 cm$$
 ; $h = \frac{H}{n} = \frac{170}{10} = 17 cm$

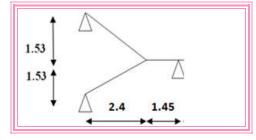
• Calcul de l'inclinaison de la paillasse

$$tag\alpha = \frac{170}{270}$$
 ; $\alpha_1 = 32.19^{\circ}$

• Calcul de l'épaisseur de la paillasse

$$L = L_p + \sqrt{L_0^2 + H^2} + L'_p L = 1.45 + \sqrt{(2.7)^2 + (1.7)^2} = 4.64m$$

$$\frac{L}{30} \le e \le \frac{L}{20} \Longrightarrow \frac{464}{30} \le e \le \frac{464}{20} \Longrightarrow 15.46 \le e \le 23.32$$


On opte pour une épaisseur de l' RDC de e = 18cm

2^{éme} type : escalier de l'étage 1 :

n=9; n-1=8;
$$g = 30 \ cm$$
; et $h = 17 \ cm$; $\alpha = 32.52^{\circ}$

$$L = 4.296$$
m

 $14.32 \le e \le 21.48$ On opte pour **e =15cm**

<u>Figure II.8</u>:schéma statique d'escalier de l'étage l

3^{éme} type : escalier de l'étage 2, à 3 volées identiques, et des étages courants a 2 volées

n=9; n-1=8; et h = 17 cm;
$$\alpha = 32.52^{\circ}$$
; $L = 2.84$

 $9.466 \le e \le 14.2$ On opte pour **e =12cm**

II-2 pré dimensionnement des éléments principaux :

1.53

<u>Figure II.9</u>: Schéma statique des étages courants et étage 2

II-2-1 pré dimensionnement des poutres :

C'est les poutres qui sont perpendiculaires aux poutrelles, on calcul leurs hauteurs selon la condition de la flèche suivante :

$$\frac{Lmax}{15} \le h \le \frac{Lmax}{10} \quad \textbf{(BAEL91)}$$

L_{max} : c'est la portée maximale entre nus d'appuis de deux poutres principales.

*vérifications de (RPA 99V2003 Art 7.5.1) :
$$\begin{cases} h \ge 30cm \\ b \ge 20cm \\ \frac{h}{b} < 4 \end{cases}$$

Le tableau suivant résume le pré dimensionnement des poutres

Poutre	L_{max} (cm)	h(cm)	b (cm)	$\frac{h}{b}$	Condition du RPA
Principale	615	45	30	1.5	Vérifiée
Secondaire	485	35	30	1.16	Vérifiée

Tableau II. 3: pré dimensionnement des poutres et vérifications du RPA.

II-2-2 Pré dimensionnement des voiles:

Les voiles sont des éléments de contreventement verticaux en béton armé, ce système est destiné à assurer la stabilité globale de l'ouvrage vis-à-vis des effets horizontaux (séisme, vent, choc etc.), son Pré dimensionnement se fait d'après **l'article 7.7.1 de RPA99V2003**, il existe les conditions suivantes :

$$e \ge \max(\frac{\text{he}}{20}; 15cm)$$

e: épaisseur du voile

L≥4e

L: la largeur du voile

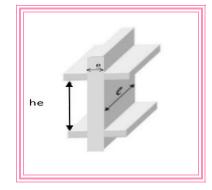
-pour RDC et sous-sol

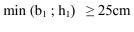
he: la hauteur libre de l'étage

$$e \ge \max\left(\frac{544-45}{20}; 15cm\right) \Rightarrow e \ge 24.95cm$$

Pour les étages supérieurs :

$$e \ge \max\left(\frac{306-45}{20}; 15cm\right) \Rightarrow e \ge 15cm$$




Figure II.10: Schéma d'un voile

 \Rightarrow On opte pour les épaisseurs des voiles comme suit : $\{s. sols \ et \ RDC : e = 25cm \}$ les étages supérieurs : e = 20cm

II-2-3 Pré dimensionnement des poteaux :

Les poteaux sont pré dimensionnées en compression simple, leurs calcul est basé sur la descente des charges en appliquant la loi de la dégression des charges sur les poteaux les plus sollicités qui sont souvent : un poteau central, un poteau de la cage d'escalier, les dimensions de la section transversale des poteaux doivent satisfirent les conditions suivantes :

- Critère de résistance (BAEL91 Art .B.8.4.1)
- ❖ Critère de stabilité de forme (flambement) (BAEL91 Art .B.8.4.1)
- **❖** La condition de RPA99V2003 (**Art .7.4.1**):

min
$$(0.25 < \frac{b1}{h1} < 4$$

$$(b_1; h_1) \ge \frac{he}{20}$$

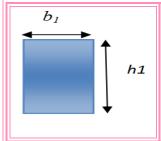


Figure II.11: la section du poteau

✓ On fixe au préalable la section des poteaux $(b_1 \times h_1)$ pour tous les niveaux comme suit :

Niveaux	Section
RDC et sous -sol	65*65
1 ^{er} et 2 ^{ième} étage	60*60
3 ^{ième} et 4 ^{ième} étage	55*55
5 ^{ième} et 6 ^{ième} étage	50*50
7 ^{ième} et 8 ^{ième} étage	45*45
9 ^{ième} étages	40*40

Tableau II.4: Les dimensions préalable des poteaux

II-3 Evaluation des charges permanentes et les charges d'exploitations:

Plancher étage courant en corps creux

Désignation des éléments	Poids volumique (KN/m²)	Epaisseur (m)	Poids G (KN/m²)	
1-revêtement en carrelage	20	0,02	0,4	
2-mortier de pose	20	0,02	0,4	
3-lit de sable	18	0,02	0,36	
4-plancher a corps creux (20+4) cm	_	0,02	3,2	
5-enduit en plâtre	10	0,02	0,2	
6-cloison de séparation	10	0,1	1	
*La charge permanente G		5,56		
*La charge d'exploitation Q		1 ,5		

Tableau II.5: Evaluation des charges et surcharges pour le plancher à corps creux

●Plancher terrasse accessible en corps creux :

Désignation des éléments	Poids volumique (KN/m²)	Epaisseur (m)	Poids G (KN/m²)	
1-revêtement en carrelage	20	0,02	0,4	
2-mortier de pose	20	0,02	0,4	
3-lit de sable	18	0,02	0,36	
4-plancher a corps creux (20+4) cm	-	0,02	3,2	
5-enduit en plâtre	10	0,015	0,15	
6-forme de pente 44		0,05	2,2	
*La charge permanente G		6,71		
*La charge d'exploitation Q		1,5		

Tableau II.6: Evaluation des charges et surcharges pour le plancher à corps creux terrasse accessible.

• Plancher tersasse inaccessible en corps creux.

Désignation des éléments	Poids volumique (KN/m²)	Epaisseur (m)	Poids G (KN/m²)	
1-Gravillon de protection	20	0,04	0,8	
2-Etanchéité multicouches	6	0,02	0,12	
3-Forme de pente	44	0,1	2,2	
4-Isolation thermique et phonique	2,5	0,04	0,1	
5-Plancher à corps creux	-	0,2	3,2	
6-Enduit en plâtre	10	0,015	0,15	
*La charge permanente G		6,57		
*La charge d'exploitation	Q		1	

<u>Tableau II.7</u>: Evaluation des charges et surcharges pour le plancher à corps creux terrasse inaccessible.

• Plancher tersasse accessible en dalle pleine.

Désignation des éléments	Poids volumique (KN/m²)	Epaisseur (m)	Poids G (KN/m²)
1-revêtement en carrelage	20	0,02	0,4
2-lit de sable	18	0,02	0,36
3-mortier de pose	20	0,02	0,4
4- Plancher en dalle pleine	25	0,15	3,75
5-enduit en plâtre	10	0,015	0,15
6-forme de pente	0,05	44 2,2	
*La charge permanente G		7,26	
*La charge d'exploitation	Q	1	,5

<u>Tableau II.8</u>: Evaluation des charges et surcharges pour le plancher en dalle pleine terrasse accessible

• Plancher étage courant en dalle pleine :

Désignation des	Désignation des éléments Poids volumique (KN/m²)		Epaisseur (m)	Poids G (KN/m²)
1-revêtement en o	carrelage	20	0,02	0,4
2-lit de sable		18	0,02	0,36
3-mortier de pose	:	20	0,02	0,4
4- Plancher en	e=12cm	25	0,12	3
dalle pleine	e=15cm	25	0,15	3,75
5-enduit de cimer	5-enduit de ciment 20		0,02	0,4
6-cloison de sépa	6-cloison de séparation 10		0,1	1
*La charga parmananta C			e=12cm	5,36
*La charge permanente G		e=15cm	6,11	
*La charge d'expl	oitation Q			1 ,5

<u>Tableau II.9:</u>Evaluation des charges et surcharges pour le plancher en dalle pleine étage courant

• Le palier de repos.

Désignatio	n des éléments	Poids volumique (KN/m²)	Epaisseur (m)	Poids G (KN/m²)	
	e=12cm	25	0,12	3	
1-palier	e=18cm	25	0,18	4,5	
	e=15 cm	25	0.15	3.75	
2-mortier de pose		20	0,02	0,4	
3-revêtement en carrelage		20	0,02	0,4	
4-Enduit er	n plâtre	10	0,02	0,2	
5-Lit de sab	ole	18	0,02	0,36	
		<u>4,36</u>			
*La charge permanente G <u>e=18cm</u>				5,86	
<u>e=15 cm</u>				5.11	
*La charge	*La charge d'exploitation Q				

<u>Tableau II.10</u>: Evaluation des charges et surcharges pour le palier de repos.

• La volée :

Désignation des éléments		Poids volumique (KN/m²)	Epaisseur (m)		Poids G (KN/m²)		
1-carrelage des march	ies	20	C),02	0,4		
2-mortier de pose des	marches	20	0	,02	0,4		
3-carrelage des contre marches	es	20	$0.02 \times \frac{0.17}{0.30}$		$0.02 \times \frac{0.17}{0.30}$		0,22
4- mortier de pose des marches	s contres	20	$20 0.02 \times \frac{0.17}{0.30}$		$0.02 \times \frac{0.17}{0.30}$ 0.22		0,22
5-paillasse en BA	E=12cm	25	$\frac{\mathrm{e}}{\cos \alpha}$				
5-painasse en DA	E=18cm	23			-		
6-Enduit en plâtre	6 Enduit on mlôtus		0,02	$\alpha_{1,}$ $\alpha_{3,}$ α_{5}	0,23		
o Enduit en platie		10	cosα	α_2, α_4	0,24		
7- marche		22	$\frac{0,17}{2}$		1,87		
		Pour α_1 =32,52	E=	12cm	7,78		

Chapitre II

dy 1		E=15cm	8,215
*La charge permanente G	Pour α_2 = 35,31	E=18cm	8,86
*La charge d'exploitation Q			2,5

Tableau II.11: Evaluation des charges et surcharges pour la volée

• Murs extérieur en doubles parois en brique creuse :

Désignation des éléments	Poids volumique (KN/m²)	Epaisseur (m)	Poids G (KN/m²)
1-Enduit en ciment	20	0,02	0,4
2-Brique creuse extérieur	9	0,15	1,3
3-l'âme d'aire	0	0,05	0
4-Brique creuse intérieur	9	0,1	0,9
5-Enduit en plâtre	10	0,02	0,2
*La charge permanente G	2,8		

Tableau II.12: Evaluation des charges et surcharges pour le Murs extérieur en doubles parois en brique creuse

II-3-1 Descente des charges :

On appelle « descente de charge »l'opération qui consiste à calculer pour tous les éléments porteurs de la construction les charges qu'ils supportent à chaque niveau en partant du dernier étage en descendant jusqu'aux fondations.

Pour tenir compte de la continuité qui provoque une distribution de charges un peu différente, le CBA (Art B.8.1.1) nous exige de majorer l'effort Nu comme suit :

10 % poteaux internes voisin de rive dans le cas d'un bâtiment comportant au moins 3 travées;

15 % poteaux centraux dans le cas d'un bâtiment à 2 travées.

Les règles de BAEL 91 nous recommandent une dégression de charges d'exploitation et ceci pour tenir opte du non simultanéité du chargement sur tous les plancher

Sous toit ou terrasse : Q_0

Sous dernier étage : $Q_0 + Q_1$

Sous étage immédiatement inférieur : $Q_0 + 0.95(Q_1 + Q_2)$

Sous étage immédiatement inférieur: $Q_0 + 0.9(Q_1 + Q_2 + Q_3)$

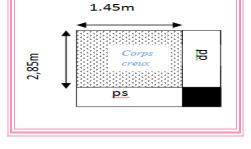
Sous étage n quelconque : $Q_n = Q_0 + \frac{3+n}{2n} (Q_1 + Q_2 + \dots Q_n)$

Le coefficient $\frac{(3+n)}{2n}$ étant valable pour $n \ge 5$

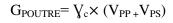
Pour notre projet on va étudier deux poteaux nommée « C4 » et « B2 » présenter sur la figure **II-**2.1

II-4 Pré dimensionnement des poteaux à L'ELU:

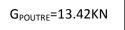
II-4-1 Calcul du poteau de la cage d'escalier C4:


-Terrasse inaccessible:

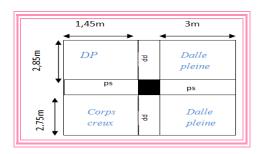
Saff CC =2,85×1.45=4.13 m^2


•Poids du plancher en corps creux :

$$\begin{cases} G^{CC} = G^{CC \text{ inacc}}_{Terasse} \times Saff^{CC} = 6,57 \times 4.13 = 27.15KN \\ Q^{CC} = Q^{CC \text{inacc}}_{Terasse} \times Saff^{CC} = 1 \times 4.13 = 4.13KN \end{cases}$$


•Poids des poutres :

<u>Figure II.12</u>: la surface afférente du poteau « C4 » de la terrasse accessible

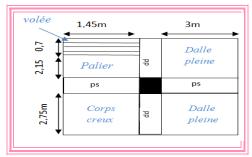
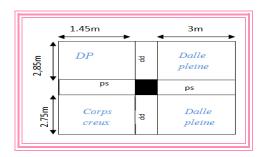

 $=25(b_{pp}\times h_{pp}\times L_{PP} + b_{ps}\times h_{ps}\times L_{Ps}) =25(0.3\times0.45\times2.85+0.3\times0.35\times1.45)$

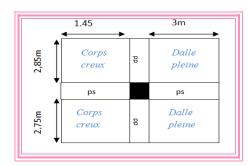
Poids de l'acrotère:

 $G_{Acrotère} = 2,2 \times 5,575 = 12,26KN$

$$Q_{Acrotère} = 1 \times 5,575 = 5,575 KN$$

<u>Figure II.13</u>: la surface afférente du poteau « C4 » de l'étage 9


Figure II.15: la surface afférente du poteau« C4 »' pour l'étage 1 et RDC.

•Poids de poteau:

 $G_{Poteau} = V_b \times (b \times h \times he) = 25(0.4 \times 0.4 \times 3.4) = 13.6 \text{ KN}$

<u>Figure II.14</u>: la surface afférente du poteau « C4 » pour les étages de 8 à 2

<u>Figure II.16</u>: la surface afférente du poteau'« C4 » pour le sous sol.

-Le tableau ci-dessous résume les résultats de Les calculs des charges et surcharges reprises par le poteau « C4 » pour les autres étages.

étages	Plancher corps cre		Planchers pleine	s en dalle	Esca	liers	Poutres	Poteaux	Murs
	G(KN)	Q(KN)	G(KN)	Q(KN)	G(KN)	Q(KN)	G(KN)	G(KN)	G(KN)
étage 9	26.75	3.98	124.79	31.39	1	/	36.40	12.24	49.623
Etage 8à 2	22.17	5.98	124.79	31.39	1	/	33.14		49.623
étage 1	22.170	9.968	119.257	49.793	8.779	2.537	36.4	27.54	50.251
RDC	22.170	9.968	149.160	54.512	48.9158	11.962	36.4	57.46	31.830
Sous-sol	45.147	40.6	102,65	84			36.4	32.32	60.485

Tableau II.13: charges et surcharges reprise par le poteau 'C4'

La descente de charge du poteau « C4 » :

Niveau	Eléments	G(KN)	Q(KN)
	-Plancher terrasse cc	27.18	Q_0
N11	-poutres	15.98	
	-poteaux	12.24	4.13+5,575
	-acrotère	12.26	
	Somme	67.65	9.705
	-Plancher terrasse en cc	26.756	Q_0+Q_1
	-Plancher terrasse en DP	148.87	
	-poutres	36.4	9.705+3.987+31.395
N10	-poteaux	12.24	
	-Murs	35.924	
	Somme	327.84	49.09
	-Plancher en cc	22.170	
	-Plancher EC en DP	124.798	
	-poutres	36.4	Q ₀ +0,95(5.981+31.398)
N9	-poteaux	15.49	
	-Mur	49.623	
	Somme	576.30	84.60
	-Plancher en corps creux	22.170	
	-Plancher EC en DP	124.798	
	-poutres	36.4	
	-poteaux	15.49	Q ₀ +0,9(5.98+31.398)
N8	-Mur	49.623	
	Somme	824.78	118.241
	-Plancher en corps creux	22.170	
	-Plancher EC en DP	124.798	
	-poutres	36.4	
	-poteaux	19.125	Q ₀ +0,85(5.981+31.398)
N7	-Murs	49.623	
	Somme	1076.889	150.013
	-Plancher en corps creux	22.170	
	-Plancher EC en DP	124.798	
	-poutres	36.4	
	-poteaux	19.125	$Q_0 + 0.8(5.981 + 31.398)$
N6	-Murs	49.623	
	Somme	1329.005	179.916

N5	-Plancher en corps creux -Plancher EC en DP -poutres -poteaux -Murs	22.170 124.798 36.4 23.14 49.623	Q ₀ +0,75(5.981+31.398) 207.638
N4	-Plancher en corps creux -Plancher EC en DP -poutres -poteaux -Murs	22.170 124.798 36.4 23.14 49.623	Q ₀ +0,714(5.981+31.398)
	Somme	1841.267	234.638
N3	-Plancher en corps creux -Plancher EC en DP -poutres -poteaux -Murs	22.170 124.798 36.4 41.31 49.623	Q ₀ +0,688(5.981+31.398)
	Somme	2115.588	260.354
N2	-Plancher en corps creux -Plancher EC en DP -Escaliers -poutres -poteaux -Murs	22.170 119.357 8.779 36.4 27.54 50.251	Q ₀ +0,666(9.868+49.793+2.537)
	Somme	2380.065	301.777
N1	-Plancher en corps creux -Plancher EC en DP -Escaliers -poutres -poteaux -Murs	22.170 143.450 48.915 36.4 57.46 31.830	Q ₀ +0,65(9.968+54.512+48.915)
	Somme	2720.29	375.483
N0	-Plancher en corps creux -Plancher EC en DP -poutres -poteaux -Murs	45.147 102.648 36.4 32.32 60.485	Q ₀ +40.6+84
	Somme	2997.29	500.083

Tableau II.14: résultats de la descente de charge pour le poteau 'C4'

II-4-2 Calcul du poteau centrale « B2 »

Poteau B2	Somme des NU	2740.715 KN
	Somme des Q	470.53 KN

Tableau II.15: résultats de la descente de charge pour le poteau 'C4'

Remarque: D'après les calculs « C4 » est le poteau le plus sollicité sous charges verticales, dans notre cas le portique à plus de 2 travées, d'après l'article B8.1.1 du BAEL, on doit majorer l'effort normal ultime Nu de 10%. Nu=1,35G+1,5Q

=1,35 (2997.29) + 1,5 (500.083) \Rightarrow Nu=4782.78 kn

 $Nu*=1,10 \times Nu = 5261.062 \text{ kn}.$

II-5 Vérification du poteau « C4 »

a) vérification à la compression simple

On va vérifier à la compression simple le poteau "p" le plus sollicité, la condition à vérifier est :

$$\sigma_{bc} = \frac{Nu*}{B} \le \sigma_{bc} \Rightarrow \frac{5261.062}{0.65*0.65} = 12.45 \text{ mpa}$$

Tel que :
$$\overline{\sigma bc} = \frac{0.85 \times fc28}{Vb} = \frac{0.85 \times 25}{1.5} = 14,2 Mpa.$$

$$B \ge \frac{5261.062 \times 10^{-3}}{14,2} \qquad \Rightarrow \qquad B \ge 0.37m^2$$

-Le tableau ci-dessous résume les vérifications à la compression simple du poteau « C4 » dans tous les niveaux :

Niveau	Nu (KN)	Nu* (KN)	B (m ²)	B _{calculé} (m²)	Condition B>B _{calculé}
Sous sol	4782.78	5261.062	0.42	0.37	Vérifiée
RDC	4235.2245	4658.74	0.42	0.37	Vérifiée
1 ^{er} étage	3665.7525	4032.328	0.36	0.37	Vérifiée
2 ^{ième} étage	3246.5748	3571.232	0,36	0.37	Vérifiée
3 ^{ième} étage	2837.667	3121.4341	0,30	0.37	Vérifiée
4 ^{ième} étage	2451.3906	2696.5296	0,30	0.37	Vérifiée
5 ^{ième} étage	2064.03	2270.433	0,25	0.37	Vérifiée
6 ^{ième} étage	1678.8196	1846.70	0,25	0.37	Vérifiée
7 ^{ième} étage	1290.81	1419.895	0,20	0.37	Vérifiée
8 ^{ième} étage	904.905	995.3955	0,20	0.37	Vérifiée
9 ^{ième} étage	516.219	567.84	0,16	0.37	Vérifiée
Terrasse accessible	105.885	116.4735	0,16	0.37	Vérifiée

Tableau II.16: résultats de la vérification du poteau p1 à la compression simple

b) Critère de stabilité de forme :

Les poteaux doivent être vérifiés au flambement.

$$N_u \le \alpha \left| \frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_b} \right|$$

$$\alpha = \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} \quad \text{si } 0 < \lambda \le 50$$

$$\alpha=0, 6 \times (\frac{50}{\lambda})^2$$
si $50 < \lambda \le 70$

Br.: section réduite du béton (Br = (a-2)*(b-2)).

As: Section d'acier.

 $V_b = 1,5$: coefficient de sécurité du béton.

 $V_s = 1,15$: coefficient de sécurité d'acier.

 α : coefficient réducteur qui est fonction de l'élancement (λ).

Exemple de calcul:

*Vérification de poteau à la base (65*65) cm²:

$$l_f = 0.7 (3.06 - 0.45) = 1.827 m$$

$$i = \sqrt{\frac{I}{b \times h}} = i = \sqrt{\frac{I}{0,35 \times 0,4}} = 0,187 \text{ m}$$

$$\lambda = \frac{lf}{i} = 9.736$$

$$\lambda = 9.736 < 50$$
 $\Rightarrow \alpha = \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} = 0.818$

 l_f : longueur de flambement tel que $l_f = 0.7 l_0$.

 l_0 : la hauteur libre du poteau l_0 = h_{poteau} - $h_{poutre\ principale}$

i : Rayon de giration tel que i=
$$\sqrt{\frac{I}{b \times h}}$$

I : Moment d'inertie Cas d'une section rectangulaire tel que $I=\frac{b\times h^3}{12}$

D'après l'expression donnée dans le (BAEL91/99 art B.8.4.1) :

On doit vérifier la condition Br > Bcalculé

$$B_{r\,cal} \ge \frac{N_u^*}{\alpha \times \left[\frac{f_{c28}}{0.9 \times \gamma_b} + \frac{f_e}{100 \times \gamma_s}\right]} \Longrightarrow B_{r\,cal} \ge \frac{5261.062 * 10^{-3}}{0.818(\frac{25}{0.9 \times 1.5} + \frac{400}{100 \times 1.15})} = 0,292 \text{ m}^2$$

$$B_{r cal} = (65-2) \times (65-2) = 0.3969 \text{ m}^2$$

 $B_r \ge B_{r \ cal} \Rightarrow \text{Pas de risque de flambement.}$

Le tableau résume les vérifications au flambement des poteaux pour tous les niveaux :

Niveau	Nu*(KN)	i (m)	λ	A	Condi	tion Br >B _{cal}	Observation
					Br	$\mathbf{B}_{\mathrm{cal}}$	
Sous-sol	5261.062	0,187	9.736	0,818	0,3969	0,292	vérifiée
RDC	3872.99	0.187	18.3679	0.804	0.396	0.218	vérifiée
1 ^{er} étage	4032.32	0.173	10.56	0.834	0.336	0.129	vérifiée
2 ^{ième} étage	3246.57	0.173	16.75	0.182	0.336	0.181	vérifiée
3 ^{ième} étage	2837.66	0.158	11.56	0.831	0.28	0.155	vérifiée
4 ^{ième} étage	2451.39	0.158	11.56	0.884	0.28	0.133	vérifiée
5 ^{ième} étage	2064.03	0.144	12.65	0.828	0.2304	0.113	vérifiée
6 ^{ième} étage	1678.819	0.144	12.65	0.828	0.23	0.092	vérifiée
7 ^{ième} étage	1290.81	0.129	14.06	0.823	0.184	0.071	vérifiée
8 ^{ième} étage	904.905	0.129	14.06	0.823	0.184	0.049	vérifiée
9 ^{ème} étage	516.219	0.1154	15.83	0.816	0.39	0.028	vérifiée
Terrasse acc	105.885	0.1154	17.89	0.8	0.39	6.01*10 ⁻³	vérifiée

Tableau II.17: Tableau récapitulatif des vérifications au flambement.

C-vérification des conditions de (RPA99/2003 Art 7.4.1) :

$$\begin{cases} \text{Min } (b1, h1) \ge 25\text{cm} \\ \text{Min } (b1, h1) \ge \frac{he}{20} \\ \frac{1}{4} \le \frac{b1}{h1} \le 4 \end{cases}$$

Etage	Section (b*h)	Condition RPA	Valeur		observation
Sous-sol et RDC		$Min (b1, h1) \ge 25cm$	65≥ 25	5cm	vérifiée
	(65×65)	Min (b1, h1) \geq he/20	65 ≥15.3	65 ≥27.2	vérifiée
		$1/4 \le b1/h1 \le 4$	1/4≤1	. <u>≤</u> 4	vérifiée
1 ^{er} et 2 ^{ième} étage		$Min (b1, h1) \ge 25cm$	$60 \ge 23$	5cm	vérifiée
	(60×60)	Min (b1, h1) \geq he/20	60 ≥15.3	60 ≥0.22	vérifiée
		$1/4 \le b1/h1 \le 4$	1/4≤1	. <u>≤</u> 4	vérifiée
3 iém et 4 ième étage		$Min (b1, h1) \ge 25cm$	55 ≥ 25	5cm	vérifiée
	(55×55)	Min (b1, h1) \geq he/20	55 ≥15.3		vérifiée
		$1/4 \le b1/h1 \le 4$	1/4≤1≤4		vérifiée
5 iém et 6 ième étage		$Min (b1, h1) \ge 25cm$	50≥ 25	5cm	vérifiée
	(50×50)	Min (b1, h1) \geq he/20	50 ≥15.3		vérifiée
		1/4 ≤b1/h1≤ 4	1/4≤1	<u>≤</u> 4	vérifiée
7 iém et 8ième étage		$Min (b1, h1) \ge 25cm$	45≥ 25cm		vérifiée
	(45×45)	$Min (b1, h1) \ge he/20$	45 ≥1:	5.3	vérifiée
		$1/4 \le b1/h1 \le 4$	1/4≤1	.≤4	vérifiée
9 ^{em} et terrasse acce		$Min (b1, h1) \ge 25cm$	40 ≥ 25cm		vérifiée
	(40×40)	Min (b1, h1) \geq he/20	40 ≥15.3	40 ≥0.23	vérifiée
		$1/4 \le b1/h1 \le 4$	1/4≤1≤4		vérifiée

Tableau II. 18. Tableau vérification de RPA.

• Conclusion:

Après le pré-dimensionnement des éléments structuraux et la vérification des conditions nécessaires, on Opte pour les dimensions suivantes :

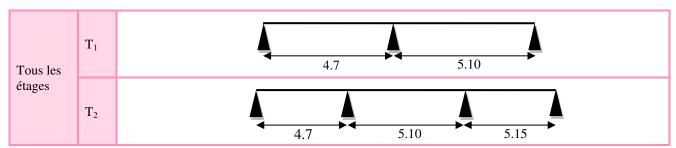
Les	éléments	Les dimensions	
Plancher à Corps creux	Tous les niveaux	20+4	
Dalles pleines	Dalle pleine à l'intérieur	15 cm	
	Dalle pleine des balcons	12 cm	
Escalier	RDC	e =18 cm	
	étage 1	e =15 cm	
	Etages courants et étage 2	e =12 cm	
Poutres	Principales	30*45	
	Secondaire	30*35	
Voiles	RDC et sous-sol	25 cm	
	Etages supérieurs	20 cm	
	RDC et sous-sol	65*65	
Poteaux	1 ^{er} et 2 ^{ième} étage	60*60	
	3 ^{iém} et 4 ^{ième} étage	55*55	
	5 ^{iém} et 6 ^{ième} étage	50*50	
	7 ^{iém} et 8 ^{ième} étage	45*45	
	9 ^{em} et terrasse inacc	40*40	

Tableau II. 19: Récapitulatif des dimensions des différents éléments

II-6 étude du plancher :

Dans notre projet on à deux type de plancher :

- -Plancher à corps creux
- Plancher à dalle pleine


II-6-1 Planchers à corps creux :

Le plancher à corps creux est constitué d'hourdis ainsi qu'une dalle de compression et prend appui sur des poutrelles.

• Les poutrelles

Les poutrelles se calculent à la flexion simple, elles sont des sections en T en béton armé servant à transmettre les charges reparties ou concentrées aux poutres principales.

La disposition des poutrelles choisie montrée sur la **fig(01)** du **chapitre II (voir page)** donne naissance à différents types de poutrelles recensés dans le tableau suivant :

Tableau II.20 : les différents types de poutrelles

Les méthodes de calcul

Les poutrelles sont calculées à la flexion simple sous G et Q comme des poutres continues sur plusieurs appuis. Pour ce faire, nous disposons de deux méthodes :

- ✓ Méthode forfaitaire
- ✓ Méthode de Caquot.

Méthode forfaitaire

Elle est applicable si les conditions suivantes sont satisfaites.

- O Plancher à surcharges modérées : $Q \le Min(2G;5)KN/m^2$.
- Le rapport entre deux travées successives : $0.8 \le \frac{l_i}{l_{i+1}} \le 1.25$.
- o Le moment d'inertie est constant sur tout le long de la travée.
- o Fissuration peu nuisible.

A Calcul des moments :

✓ Moments aux appuis :

 $(-0.6 M_0$: pour un appuis central (cas de deux travée)

 $-0.5 M_0$: pour le premier appuis intermédiaire voisin de rive à plus de deux travée $-0.4 M_0$: pour tous les appuis centreaux (autre que les voisins de rive)pour les

poutres ou poutrelles a plus de 3 travées.

Aux niveaux des appuis de rive M_0 est nulle, **le BAEL** exige de mettre des aciers de fissurations $Ma_{rive} = -0.15M_0$

✓ Moments en travée :

Les moments en travée sont déterminés à partir des deux expressions suivantes :

(1)
$$M_t + \frac{\left|M_g\right| + \left|M_d\right|}{2} \ge \max \begin{cases} (1 + 0.3 \times \alpha) \times M_0 \\ 1.05 \times M_0 \end{cases}$$
: Travée de rive

$$(2): \begin{cases} M_t \ge \frac{1,2+0,3\times\alpha)\times M_0}{2} \\ M_t \ge \frac{(1+0,3\times\alpha)\times M_0}{2} \end{cases}$$
: Travée intermédiaire

 M_t : Est le maximum entre (1) et (2)

 M_0 : Moment isostatique de la travée considérée.

! Les efforts tranchants :

Les efforts tranchants sont évalués :

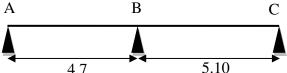
Soit forfaitairement en supposant la discontinuité entre les travées, dans ce cas les

Efforts tranchants hyperstatiques sont confondus même avec les efforts tranchants Isostatiques sauf pour les appuis voisins de rive.

- L'effort tranchant isostatique doit être majoré de :
- 15 % s'il s'agit d'une poutre à deux travées
- 10 % s'il s'agit d'une poutre à plus de deux travées.

Soit par la méthode RDM:

Compte tenu de la continuité : Vu= Vu0 (isostatique) + (Mi-Mi-1) / Li


Calcul des charges revenant aux poutrelles

ELU:
$$\begin{cases} q_u = 1.35G + 1.5Q \\ p_u = q_u * l_0 \end{cases}$$
 ELS:
$$\begin{cases} q_s = G + Q \\ p_s = q_s * l_0 \end{cases}$$
 avec $l_0 = 0.65m$ Les résultats de calcul l'ELU et l'ELS sont résumé dans le tableau suivant :

Niveaux	G	Q	EI	LU	ELS	
			p _u kn/m²	q _u kn/m²	p _s kn/m ²	q kn/m²
Terrasse accessible	6.71	1.5	11.308	7.350	8.21	5.336
Etages courants	5.56	1.5	9.756	6.341	7.06	4.589
Etage 1+2	5.56	2.5	11.256	7.316	8.06	5.239
RDC	5.56	5	15.00	9.753	10.56	6.864

Tableau II.21: tableau des charges revenant aux poutrelles

On exposera un exemple de calcul de la poutrelle suivante par la méthode forfaitaire de la terrasse accessible:

Figure II.18 : schéma statique de la poutrelle T1

Calcul d'une Poutrelle type T1

Vérification des conditions de l'application de la méthode forfaitaire

1)
$$Q \le \min(2G; 5) \to Q = 1.5 \min(9.82; 5)$$
 vérifiée

1)
$$Q \le \min(2G; 5) \to Q = 1.5 \min(9,82; 5)$$
 vérifiée
2) $\frac{Li}{Li+1} = \frac{4.7}{5.1} = 0.92 \in (0.8, 1.25)$ v érifiée.

3) I= est constant sur toute la poutrelle...... vérifiée

- 4) Fissuration peut nuisible vérifiée
 - ⇒ Donc la méthode forfaitaire est applicable.

❖ les moments isostatique :

Travée AB:
$$\begin{cases} M_0^u = \frac{q_u * l_{AB}^2}{8} = \frac{7.35 * (4.7)^2}{8} = 20.29 \text{ kn. m} \\ M_0^s = \frac{q_s * l_{AB}^2}{8} = \frac{5.336 * (4.7)^2}{8} = 14.73 \text{kn. m} \end{cases}$$
Travée BC:
$$\begin{cases} M_0^u = 23.89 \text{ kn. m} \\ M_0^s = 17.34 \text{ kn. m} \end{cases}$$

❖ Moments aux appuis :

$$MA = MC = -0.15 * max (M_0^{AB}; M_0^{BC})$$

 $MB = -0.6 * max(M_0^{AB}; M_0^{BC})$

$$\begin{cases} \text{ELU: } M_u^A = M_u^C = -0.15*M_0^{BC} = -3.58 \text{ kn. m} \\ \text{ELS: } M_s^A = M_s^C = -2.6 \text{ kn. m} \\ \text{ELU: } M_U^B = -0.6*M_0^{BC} = -14.334 \text{ kn. m} \\ \text{ELS: } M_S^B = -10.40 \text{kn. m} \end{cases}$$

❖ Les moments en travée :

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+6.71} = 0.182 \begin{cases} 1 + 0.3\alpha = 1.054 \\ 1.2 + 0.3\alpha = 1.254 \end{cases}$$
• Travée AB (travée de rive) :

$$\begin{cases} cnd \ 1 \dots M_t^{AB} + \frac{MA + MB}{2} \ge \max(1.05; 1.054) M_0^{AB} \Longrightarrow M_t^{AB} \ge 0.754 M_0^{AB} \\ cnd \ 2 \dots M_t^{AB} \ge \frac{1.254}{2} M_0^{AB} = 0.627 M_0^{AB} \end{cases}$$

 $M_t^{AB} = \max(cnd1; cnd 2)$

• On fait la même chose pour la travée **BC** et on aura :

$$AB:$$
 $\begin{cases} M_{t.u}^{AB} = 15.298 \ kn.m \\ M_{t.s}^{AB} = 11.106 \ kn.m \end{cases}$ $BC:$ $\begin{cases} M_{t.u}^{BC} = 19.09 \ kn.m \\ M_{t.s}^{BC} = 13.857 \ kn.m \end{cases}$

Effort tranchant:

• Travée AB:

$$\begin{aligned} \text{VA} &= \ V_0 = \frac{q_u * l}{2} & et \quad V_B = -1.15 \ V_0 \\ \textbf{AB} : \begin{cases} V_A = 17.272 \ kn \\ V_B = -18.99 \ kn \end{cases} & \textbf{BC} : \begin{cases} V_B = 20.61 \ kn \\ V_C = -18.742 \ kn \end{cases} \end{aligned}$$

❖ Sollicitations maximales de la poutrelle T1 pour les différents niveaux sont résumées dans le tableau suivant:

		ELU		ELS			
Niveaux	M ^{travée} (kn.m)	M ^{appui} (kn.m)	M ^{appui} (kn.m)	Vmax (kn)	M ^{travée} (kn.m)	M ^{appui} (kn.m)	M ^{appui} (kn.m)
RDC	28.122	-19.02	-4.755	27.357	19.798	-13.389	-3.347
Etage 1+2	19.938	-14.271	-3.567	20.521	14.277	-10.219	-2.554
Etages courants	16.455	-12.369	-3.092	17.78	11.908	-8.951	-2.237
Terrasse accessible	19.09	14.334	-3.58	20.61	13.857	-10.40	-2.6

Tableau II.22:tableau des sollicitations maximales de la poutrelle T1 des différents niveaux

❖ Sollicitations maximales de la poutrelle T2 pour les différents niveaux sont résumées dans le Tableau suivant:

		ELU		ELS			
Niveaux	M ^{travée} (kn.m)	M ^{appui} (kn.m)	M ^{appui} rive (kn.m)	Vmax (kn)	M ^{travée} (kn.m)	M ^{appui} inter (kn.m)	M ^{appui} (kn.m)
RDC	29	-16.167	-4.85	27.625	20.408	-11.378	-3.413
Etage 1+2	20.563	-12.127	-3.63	20.722	14.724	-8.684	-2.605
Etages courants	16.982	-10.511	-3.153	17.96	12.289	-7.606	-2.281
Terrasse accessible	19.710	14.62	-3.655	20.818	14.310	-10.614	-2.653

<u>Tableau II.23</u>:.tableau des sollicitations maximales de la poutrelle T2 des différents niveaux

❖ Les résultats de calcul les plus défavorables des efforts internes des poutrelles de type T1 et T2 :

		ELU		ELS			
Niveaux	M ^{travée} (kn.m)	M ^{appui} (kn.m)	M ^{appui} (kn.m)	Vmax (kn)	M ^{travée} (kn.m)	M ^{appui} (kn.m)	M ^{appui} (kn.m)
RDC	29	-19.02	-4.85	27.625	20.408	-13.389	-3.413
Etage 1+2	20.563	-14.271	-3.63	20.722	14.724	-10.219	-2.605
Etages courants	16.982	-12.369	-3.153	17.96	12.289	-8.951	-2.281
Terrasse accessible	19.710	14.62	-3.655	20.818	14.310	-10.614	-2.653

Tableau II.24: tableau récapitulatif des efforts maximaux

***** Ferraillage des poutrelles :

On prend comme exemple les sollicitations max de RDC :

ELU:
$$\begin{cases} M_t^u = 29 \ kn. \ m \\ M_a^{int} = -19.02 \ kn. \ m \\ M_a^{rive} = -4.85 \ kn. \ m \end{cases}$$
 ELS:
$$\begin{cases} M_t^s = 20.408 \ kn. \ m \\ M_a^{int} = -13.389 \ kn. \ m \\ M_a^{rive} = -3.413 \ kn. \ m \end{cases}$$

 $V_{max} = 27.625 \ kn$

Les caractéristiques de la poutre :

$$\begin{cases} b = 65 \text{ cm} \\ h = 24 \text{ cm} \\ b_0 = 10 \text{cm} \end{cases} \begin{cases} d = 21.6 \text{ cm} \\ d' = 2.4 \text{ cm} \\ h_0 = 4 \text{cm} \end{cases} \begin{cases} fc_{28} = 25 \text{ Mpa} \\ ft_{28} = 2.1 \text{ Mpa} \\ f_{bu} = 14.2 \text{Mpa} \end{cases}$$

♣ Calcul a l'ELU :

***** Les armatures longitudinales :

• En travée :

$$M_{tu} = b * h_0 * f_{bu} * \left(d - \frac{h_0}{2}\right) = 0.65 * 0.04 * 14.2 * \left(0.216 - \frac{0.04}{2}\right) = 72.363 \text{ kn. m}$$

 $M_{tu} = 72.363 \text{kn. } m > M_t = 29 \text{kn. } m$

 \Leftrightarrow *l'axeneutre se trouve dans la table de compression* (s.p.c), le calcul se fait pour une section rectangulaire (b*h)

$$\mu_{bu} = \frac{M_t}{b*d^2*f_{bu}} = \frac{29*10^{-3}}{0.65*(0.216)^2 - 14.2} = 0.067 < 0.186 \iff pivot \ A \iff A' = 0 \ \text{donc}$$

les armatures dans la zone comprimé sont pas nécessaire

$$\begin{aligned} pivot \, A \, &\rightarrow \, \varepsilon_{st} = 10\% \, \rightarrow \, f_{st} = \frac{fe}{\gamma_s} = \frac{400}{1.15} = 348 \, Mpa \\ \alpha = 1.25 * \left(1 - \sqrt{1 - 2 * \mu_{bu}}\right) = 0.087 \qquad ; \, Z = d * (1 - 0.4\alpha) = 0.21 \, m \end{aligned}$$

$$A_t = \frac{Mt}{z*fst} = \frac{29*10^{-3}}{0.21*348} = 3.97 \text{ cm}^2$$

Vérification de la condition de non fragilité :

$$A_t^{min} = \frac{0.23*b*d*ft_{28}}{fe} = \frac{0.23*0.65*0.216*2.1}{400} = 1.695cm^2$$

$$A_t^{min} = 1.695 \ cm^2 \le A_t^{calc} = 3.97 \ cm^2$$
 On ferraille avec A_t^{cal}

• En appuis :

• Appuis intermédiaire

Aux niveaux des appuis les moments sont négatifs, donc le calcul se fera pour une section rectangulaire $(b_0 * h)$

$$\mu_{bu} = \frac{M_a}{b_0 * d^2 * f_{bu}} = \frac{19.02 * 10^{-3}}{0.10 * (0.216)^2 - 14.2} = 0.287 > 0.186 \rightarrow pivot B$$

$$\mu_{bu} < \mu_l = 0.391 \rightarrow A' = 0$$

$$\mu_{bu} < \mu_l = 0.391 \quad \to A' = 0$$

$$\alpha = 0.434$$
; $z = 0.178$

$$A_a^{int} = \frac{Ma}{z*fst} = \frac{19.02*10^{-3}}{0.178*348} = 3.062 \ cm^2$$

Vérification de la condition de non fragilité :

$$A_a^{min} = \frac{0.23*b_0*d*ft_{28}}{fe} = \frac{0.23*0.10*0.216*2.1}{400} = 0.26 \text{ cm}^2$$

$$A_a^{min} = 0.26 \text{ cm}^2 \le A_a^{calc} = 3.062 \text{ cm}^2$$

$$A_a^{min} = 0.26 \ cm^2 \le A_a^{calc} = 3.062 \ cm^2$$

• Appuis de rive :

$$\mu_{bu} = 0.073 < 0.186 \longrightarrow pivot A \longrightarrow A' = 0$$

$$\alpha = 0.0978$$
 ; $z = 0.207$

$$A_a^{int} = 0.673 cm^2$$

Vérification de la condition de non fragilité :

$$A_a^{min} = \frac{0.23*b_0*d*ft_{28}}{fe} = \frac{0.23*0.10*0.216*2.1}{400} = 0.26 \text{ cm}^2$$

$$A_a^{min} = 0.26 \ cm^2 \le A_a^{calc} = 0.673 \ cm^2$$

Armatures transversales:

$$\emptyset \le \min(\emptyset_l^{\min}, \frac{b_0}{10}, \frac{h}{35}) \longrightarrow \emptyset_l \le \min(8; 10; 6.85)$$
 ;Soit $\emptyset_l = 8 \text{ mm}$

On opte pour un étrier $\emptyset 8 A_{tran} = 2\emptyset 8 = 1.01 \text{ cm}^2$

Vérification des poutrelles au cisaillement :

F.P.N
$$\to \bar{\tau} = \min \left(\frac{0.2 f c_{28}}{\gamma_b}; 5 Mpa \right) = 3.33 \text{ Mpa}$$

$$\tau_u = \frac{v_u}{b_0 * d} = \frac{27.625 * 10^{-3}}{0.1 * 0.216} = 1.278 Mpa$$

$$au_u = 1.278 \leq \overline{ au_u} = 3.33 \quad \textit{pas de risque de repture par cisaillemnt} \; .$$

Calcul des espacements :

st
$$\leq \min$$

$$\begin{cases} (0.9d; 40 \ cm) = 19.44 \ cm \\ \frac{A_t*0.8*fe*(\sin\alpha + \cos\alpha)}{b_0*(\tau_u - 0.3*k*ft_{28})} = 49.8 \\ \frac{A_t}{b_0*0.4} = 101 \ cm \end{cases}$$
 on opte pour st =15cm

Choix des armatures opté pour le RDC :

(en travée:
$$3\phi 12 + 1\phi 14 = 4.93 \text{ cm}^2$$

 $aux appuis de rive : 1 \Leftrightarrow 14 = 1.54 cm^2$

Vérifications nécessaires :

📤 à l'ELU :

❖ Vérification vis-à- vis de l'effort tranchant :

1) Vérification de la bielle :

$$v_u \le 0.267 \text{ b}_0 * a * fc_{28}$$
; Avec $a = \min(0.9 \text{ } d : largeur \text{ } de \text{ } l'appuis - 4 \text{ } cm)$
 $a = \min(19.44; (30 - 4)) = 19.44 \text{ } cm$
 $v_u = 27.625 \text{ km} \le 0.267 * 0.1 * 0.1944 * 25 * 10^3 = 129.495 \text{ km}$

$$v_u = 27.625 \text{ kn} \le 0.267 * 0.1 * 0.1944 * 25 * 10^3 = 129.495 \text{ kn}$$

 \rightarrow pas de rique d'ecrasement de la bielle sous l'effet de l'effort tranchant.

2) Vérification des armatures longitudinales :

• Appuis de rive :

$$A_l \ge \frac{\gamma_s * \nu_u}{fe} = \frac{1.15 * 27.625 * 10^{-3} * 10^4}{400} = 0.794 cm^2$$

$$A \text{vec } A_l = A_{trav\acute{e}e} + A_{rive} = 4.93 + 1.13 = 6.06 cm^2$$

• Appuis intermédiaires :

$$A_l \ge \frac{\gamma_s}{fe} * \left(vu + \frac{M_u^{int}}{0.9*d} \right) * 10 = \frac{1.15}{400} * \left(27.625 + \frac{14.271}{0.9*0.216} \right) * 10$$
 $A_l \ge -0.131 \text{ cm}^2$

3) Vérification de la jonction table nervure :

$$\tau_{u} = \frac{v_{u} * \frac{(b - b_{0})}{2}}{0.9 * d * b * h_{0}} \le \overline{\tau_{u}} = \min(0.2 \frac{f c_{28}}{\gamma_{b}}; 5 Mpa)$$

$$\tau_{u} = \frac{27.625 * \left(\frac{0.65 - 0.1}{2}\right) * 10^{-3}}{0.9 * 0.216 * 0.65 * 0.04} = 1.503 \text{ Mpa} < \overline{\tau_{u}} = 3.3 Mpa$$

Donc toutes les conditions sont satisfaites à l'ELU

♣ Vérification à l'ELS :

***** Etat limite de compression du béton

On doit vérifiée que :
$$\sigma_{bc} = \frac{M_{ser}}{I} * y \le \bar{\sigma}_{bc} = 0.6 f c_{28} = 15 MPA$$

• En travée :

• position de l'axe neutre (H):

$$H = \frac{b*h_0^2}{2} - 15A(d - h_0) \mapsto H = \frac{0.65*(0.04^2)}{2} - 15*4.93*(0.216 - 0.04)$$

H= -7.815* $10^{-4}m^3 < 0 \implies calculd'une section en T (b_0 * h)$

calcul de Y et I :

$$\frac{b_0}{2} * Y^2 + \lfloor (b - b_0) * h_0 + 15A \rfloor y - \left[(b - b_0) * \frac{h_0^2}{2} + 15Ad \right] = 5Y^2 + (293.95y) - 2037.32 = 0$$

$$Y = 6.26cm$$

$$I = \frac{by^3}{3} + 15A (d - y)^2$$

$$I = 21.66y^3 + 15 * 4.93 * (21.6 - y)^2 = 22505.1 cm^4$$

$$\sigma_{bc} = \frac{20.408 \times 10^{-3}}{22505.1 \times 10^{-8}} \times 6.26 \times 10^{-2} = 5.68 MPA$$

$$\sigma_{bc} < \bar{\sigma}_{bc} = 15MPA \dots \dots \dots v\acute{e}rifi\acute{e}e$$

• en appuis intermédiaire :

$$H = -3.06 * 10^{-4} m^3 < 0$$
 calcul d'un section e T

Y = 10.30 cm

$$I = 9637.468cm^2$$

$$donc\sigma_{bc} = \frac{13.389*10^{-3}}{9637.468*10^{-8}} * 10.3 * 10^{-2} = 14.30 MPA$$

$$\sigma_{bc} < \bar{\sigma}_{bc} = 15 \; MPA \ldots \ldots v\acute{e}rifi\acute{e}e$$

D'après l'article du BAEL 91 (Art.B.6.5) la vérification de la flèche n'est pas nécessaire si les conditions suivantes sont observées :

Avec:

h: Hauteur de la poutrelle.

L : Longueur de la travée.

 M_t : Moment en travée à l'ELS.

 M_0 : Moment isostatique de la travée à l'ELS.

 A_t : Section des armatures en travée choisie.

$$\begin{cases} \frac{h}{l} \ge \frac{M_t}{15M_0} & \dots & 1\\ \frac{A_t}{b_0 \times d} \le \frac{3,6}{fe} & \dots & 2\\ l \le 8m & \dots & 3 \end{cases}$$

• Vérification des conditions :

$$\begin{array}{l} l = 5.15m \;\; ; \quad \frac{h}{l} \geq \frac{M_t}{15*M_0} \; ; M_t = 29 \; kn.m \\ \frac{0.24}{5.15} = 0.046 \; \geq \frac{29}{15*22.756} = 0.084 \; ... \; ... \; ... \; ... \; condition \; non \; v\acute{e}rifi\acute{e}e \end{array}$$

La 1ére condition n'est pas vérifiée donc la vérification de la flèche est nécessaire.

On doit vérifier que : $\Delta_f \leq \bar{f}$

La flèche totale est définie d'après le **BAEL91** comme suit :

$$\begin{split} &\Delta_f = f_{gv} - f_{ji} + f_{pi} - f_{gi} \\ &\bar{f} = \frac{M_{ser}*l^2}{10*E*I_f} \end{split}$$

La flèche admissible f pour une poutre supérieure à 5 m est de :

$$\overline{f} = \frac{l}{1000} + 0.5 = \frac{515}{1000} + 0.5 = 1.015 cm = 10.15 mm$$

Evaluation des charges et moments correspondant en travée :

$$Avec: M_t^{ser} = 1.142 * M_0^{CD} - 0.25 * M_0^{BC}$$

$$\begin{cases} q_g^{ser} = 0.65 * G = 3.614 \frac{kn}{m} \\ q_j^{ser} = 0.65 * j = 2.73 \frac{kn}{m} \\ q_p^{ser} = 0.65(G+Q) = 6.864 \frac{kn}{m} \end{cases} \begin{cases} G = 5.56 \frac{kn}{m^2} \\ j = G - G^{rev} = 4.2 \frac{kn}{m^2} \\ p = G + Q = 10.56 \frac{kn}{m^2} \end{cases} \begin{cases} M_g^{ser} = 10.745 \frac{kn}{m} \\ M_j^{ser} = 8.117 \frac{kn}{m} \\ M_p^{ser} = 20.408 \frac{kn}{m} \end{cases}$$

$$\sigma_{st}^G = 15 * \frac{M_G^{ser} * (d-y)}{I}; \text{ Avec y=11.95 cm et I= 43848.979 } cm^2 \\ \begin{cases} \sigma_{st}^G = 109.86 \ Mpa \\ \sigma_{st}^J = 82.991 \ Mpa \\ \sigma_{st}^p = 208.65 \ Mpa \end{cases}$$

Position du centre de gravité de la section homogène :

$$y_G = \frac{\sum s_i * y_i}{\sum s_i}$$

$$y_G = \frac{(b*h_0)*\frac{h_0}{2} + \left(b_0*(h*h_0)*h_0 + \frac{(h-h_0)}{2}\right) + 15*At*d}{b*h_0 + b_0*(h-h_0) + (15-At)} = 5.482 cm$$

Moment d'inertie
$$l_f: l_f = \frac{1.1 l_0}{1 + \lambda * u}$$
 ; $\rho = \frac{As}{h_0 * d} = \frac{4.93}{10 * 21.6} = 0.02282$

$$\begin{cases} \lambda_i = \frac{0.05*b*ft_{28}}{(2*b+3*b_0)} = 1.869 \\ \lambda_v = \frac{2}{5}\lambda_i = 0.7447 \end{cases} \begin{cases} \mu_g = 1 - \frac{1.75*ft_{28}}{4*\rho*\sigma_{st}^G + ft_{28}} = 0.696 \\ \mu_j = 0.6199 \\ \mu_p = 0.826 \end{cases}$$

Calcul des moments d'inertie fictive et la flèche ;

$$\begin{array}{l} \text{Calcul des moments d'inertie fictive et la flèche ;} \\ If_{ji} = \frac{1.1*I_0}{1+\lambda_i*\mu_j} = 23461.296 \\ If_{gi} = \frac{1.1*I_0}{1+\lambda_i*\mu_g} = 22010.980 \\ If_{pi} = \frac{1.1*I_0}{1+\lambda_i*\mu_p} = 19908.606 \\ If_{gv} = \frac{1.1*I_0}{1+\lambda_v*\mu_g} = 33319.99 \\ \end{array} \qquad \begin{array}{l} f_{ji} = \frac{8.117*10^{-3}*(5.15)^2}{10*32456.59*23461.296*10^{-8}} = 0.00282 \\ f_{gi} = \frac{M_g^{ser}*l^2}{10*E_i*if_{gi}} = 0.00476 \\ f_{pi} = \frac{M_g^{ser}*l^2}{10*E_i*if_{pi}} = 0.00837 \\ f_{gv} = \frac{M_g^{ser}*l^2}{10*E_v*if_{gv}} = 0.007905 \\ \Delta f = 9.466 \text{ mm} < \overline{f} \text{ adm} = 10.15 \text{ mm} \end{array}$$

Donc la flèche est vérifiée.

Dans le tableau suivant on a résumé le ferraillage des poutrelles des différents niveaux

Niv	Locali	Mmt (kn)	μ_{bu}	α	Z(m)	$A_{cal} \ cm^2$	$A_{min} \ cm^2$	$A_{adop} \ cm^2$
RDC	Travée	29	0.067	0.087	0.21	3.97	1.69	$3\phi 12 + 1\phi 14 = 4.93$
	A_{int}	-19.02	0.287	0.434	0.178	3.062	0.26	$1\phi 14 + 1\phi 16 = 3.55$
	A_{rive}	-4.85	0.073	0.097	0.16	0.673	0.67	1φ14=1.54
Etage	Travée	20.563	0.0478	0.061	0.21	2.81	1.7	$2\phi 12 + 1\phi 14 = 3.8$
1+2	A_{int}	-14.271	0.0331	0.042	0.21	1.95	0.26	$2\phi 12 = 2.26$
	A_{rive}	-3.63	0.0084	0.011	0.22	0.47	0.26	$1\phi 12=1.134$
Etages	Travée	16.982	0.0394	0.05	0.21	2.32	1.7	$2\phi 12 + 1\phi 14 = 3.8$
courants	A_{int}	-12.369	0.0287	0.036	0.21	1.69	0.26	$2\phi 12 = 2.26$
	A_{rive}	-3.153	0.0073	0.009	0.22	0.41	0.26	1φ12=1.13
Terrasse	Travée	19.710	0.0458	0.059	0.21	2.7	1.7	$2\phi 12 + 1\phi 14 = 3.8$
acces	A_{int}	-14.62	0.0339	0.043	0.21	2	0.26	2φ12=2.26
	A_{rive}	-3.655	0.0085	0.011	0.22	0.48	0.26	1φ12=1.13

Tableau II.5 calcul du ferraillage longitudinal des différents niveaux

X 7.	Cisaillement	Arm longitud	linales A_l (cm^2)	Vérification de la	Jonction table
Niveaux	$\tau_u < \overline{\tau_u}$	$\frac{\gamma_s * \nu_u}{f_e}$	$\frac{\gamma_s}{f_e}(v_u + \frac{M_u^{int}}{0.9d})$	bielle $vu \le 0.267 * a * b_0 * fc_{28} (kn)$	nervure $\tau_u < \overline{\tau_u}$
Etage 1+2	0.595< 3.33	0.595	-1.51	129.762	1.127< 3.33
Etages courants	0.83< 3.33	0.516	-1.312	129.762	0.977< 3.33
Terrasse accessible	0.963< 3.33	0.598	-1.563	129.762	1.132< 3.33

Tableau II.26. vérification nécessaire à l'ELU

Niveaux	Localisation	<i>M^{ser}kn.</i> m	$A_s(cm)^2$	Y (cm)	I(cm) ⁴	Contraintes $\sigma_{bc} \leq \overline{\sigma_{bc}}$	Observation
Etage 1+2	Travée	-14.724	3.8	5.49	18317.85	4.41< 15	Vérifiée
	Appuis	-10.219	2.67	4.61	13679.41	10.35< 15	Vérifiée
Etages	Travée	12.289	3.8	5.49	18317.85	3.68< 15	Vérifiée
courants	Appuis	-8.951	2.67	4.61	13679.41	9.073< 15	Vérifiée
Terrasse	Travée	14.310	3.8	5.49	18317.85	4.29< 15	Vérifiée
accessible	Appuis	-10.614	2.67	4.61	13679.41	10.76< 15	Vérifiée

Tableau II.27: vérification des contraintes à l'ELS

***** Ferraillage des poutrelles du RDC :

Appuis de rive

1 HA14
2 HA14
3 HA12
1 HA14
3 HA12
1 HA14
3 HA12

travée

appuis intermédiaire

Figure II.19: Ferraillage des poutrelles de l'RDC

❖ Ferraillage de la dalle de compression : CBA93 article(B.6.8.4.2.3)

Barres perpendiculaire(\perp) aux poutrelles :

 $50 \text{ cm} \le l_0 = 65 \text{ cm} \le 80 \text{ cm}, \text{ donc} :$

$$A_{\perp} = \frac{4l_0}{f_e} = \frac{4*65}{500} = 0.52 \ cm^2/ml. \ avec \ S_t \leq 20 \ cm$$

❖ Barres parallèle(||) aux poutrelles :

$$A_{\parallel} = \frac{A_{\perp}}{2} = \frac{0.52}{2} 0.26 \, cm^2 / ml.$$

✓
$$l_0 = 65 cm$$
.

$$\checkmark f_e = 500 MPa$$
.

D'âpres le CBA les espacements ne doivent pas dépasser :

(st \leq 20cm : pout le armatures perponduculaire aux nervures

 $st \le 30cm : pour les armatures paralléles aux nervures$

On opte pour un treillis soudés $\phi_6(150 \times 150) \text{ mm}^2$.

$$\begin{cases} A_{\perp} = 5\phi_6/ml = 1,40 \ cm^2/ml. \\ S_t = 20 \ cm \le 20 \ cm. \end{cases} \begin{cases} A_{\parallel} = 4\phi_6/ml = 1,13 \ cm^2/ml \\ S_t = 25cm \le 33 \ cm \end{cases}$$

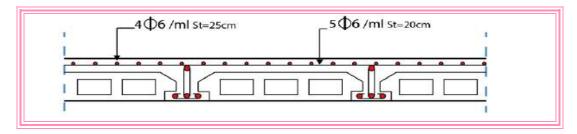


Figure II.20 : Ferraillage de la dalle de compression

II-6-2 planchers en dalle pleine :

Une dalle pleine est une plaque porteuse horizontale en béton armé coulé sur place qui repose sur un ou plusieurs appuis.

Remarque : on va présenter les panneaux de dalles les plus sollicités pour chaque type de dalle, à savoir les dalles (D6 sur 3 appuis, D14 sur 2 appuis, D8 sur 4 appuis, D13sur 4 appuis)

A- Dalle sur 2 appuis (D14):

*Les caractéristiques de la dalle :

 $G=5,36KN/m^2$; $Q=3,5KN/m^2$; e=12cm

1x=1,4m; 1y=2,67m; $\rho=0,52>0,4$

***** Evaluation des charges :

Le calcul se fait par une bande de 1ml

ELU: Pu=1,35G+1,5Q=12,486KN/m

ELS : Ps=G+Q=8,86KN/m

A Calcul des sollicitations :

$$M_o^x = \mu_x \times pu \times l_x^2$$

 $M_o^y = \mu_y \times M_o^x$

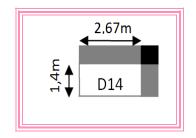


Figure II. 21: Dalle sur 2 appuis(D14)

ELU :	ELS:
$ \rho = 0.52 $ $ \mu_x = 0.0937 $ $ \mu_y = 0.25 $	ρ =0,52 μ_x =0,0974 μ_y =0,3853

Tableau II.28: tableau des sollicitations de la dalle 14

Les moments dans le panneau D14 :

* Les moments dans i	panneau Dit.				
	ELU	J	ELS		
	$M_x(KN.m)$	$M_y(KN.m)$	$M_x(KN.m)$	M _y (KN.m)	
M_0	2,29	0,57	1,69	0,65	
$M_t^{x,y}=0.85 M_0^{x,y}$	1,95	0,48	1,44	0,55	
$M_a^x = M_a^y = -0.5 M_0^x$	-1,14	4	-0,84		

Tableau II.29: tableau de calcul des moments

Calcul de ferraillage a L'ELU:

Le ferraillage se fait en flexion simple d'une section rectangulaire ($b \times e$) pour une bande de 1ml suivant l'organigramme de BAEL.

Données: FN; b=1m; e=12cm; c=3cm

En travée (sens x):

$$\mu_{\text{bu}} = \frac{Mt}{b \times d \times fbu} = \frac{1,95 \times 10^{-3}}{1 \times 0,09^2 \times 14,2} = 0,0169 < 0,186 \Rightarrow \text{ pivot A}$$

$$\mu_{\text{bu}} < \mu_{\text{l}} \Rightarrow \text{A}' = 0$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_{bu}}) = 0,021 \qquad ;Z = d(1 - 0,4\alpha) = 0,089$$

$$\text{At}^{\text{x}} = \frac{1,95 \times 10^{-3}}{0,089 \times 348} = 0,63 \text{ cm}^2$$

Condition de non fragilité :

$$\begin{cases} A_{x}^{\min} = \frac{\rho}{2} (3 - \rho)b \times e \\ A_{y}^{\min} = \rho \times b \times e \end{cases}$$
 Avec : $\rho = 0,0008$ (Fe E400)
$$\begin{cases} A_{x}^{\min} = \frac{0,0008}{2} (3 - 0,52)100 \times 12 = 1,19 > A_{x}^{\text{calculé}} \\ A_{y}^{\min} = 0,0008 \times 100 \times 12 = 0,96cm^{2} \end{cases}$$

-Choix des armatures en travée : A_t =5HA8/ml=2,51cm²/ml

-Calcul des espacements :

$$\begin{cases} FN \\ St \le \min(2e; 25) \\ \frac{100}{5} = 20cm \end{cases} \Rightarrow S_t = 20cm$$

-Les résultats de ferraillage sont résumés dans le tableau ci-dessous :

Position	Sens	M (KN.m)	$\mu_{ m bu}$	α	Z(m)	A ^{cal} (cm²/ml)	A ^{min} (cm²/ml)	A ^{opté} (cm²/ml)	S_t (cm)
Travée	x-x Fravée		0,0169	0,021	0,089	0,63	1,19	5HA8 =2,51cm ²	25
	у-у	0,48	0,0041	0,0053	0,089	0,15	0,96	5HA8 =2,51cm ²	25
Appui	хх ; y-y	-1,14	0,010	0,012	0,089	0,37	1,19	5HA8 =2,51cm ²	25

Tableau II.30: tableau des sollicitations de la dalle 14

❖ Vérifications à ELU :

❖ Vérification de l'effort tranchant :

On doit vérifier que :
$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \frac{0.07}{\gamma_b} f_{c28} = 1,17 \text{Mpa}$$

Sens x : $V_u^x = p_u \frac{l_x}{2} \times \frac{l_y^4}{l_{x+}^4 l_y^4} = \frac{12,486 \times 1,4}{2} \times \frac{2,67^4}{1,4^4 + 2,67^4} = 8,12 \text{KN}$

Sens y:
$$V_u^y = p_u \frac{l_y}{2} \times \frac{l_x^4}{l_{x+}^4 l_y^4} = \frac{12,486 \times 2,67}{2} \times \frac{1,4^4}{1,4^4 + 2,67^4} = 1,17 \text{KN}$$

$$\begin{cases} \tau_u^x = \frac{V_u^x}{b \times d} = \frac{8,12 \times 10^{-3}}{1 \times 0,09} = 0,090 < 1,17Mpa \\ \tau_u^y = \frac{V_u^y}{b \times d} = \frac{1,17 \times 10^{-3}}{1 \times 0,09} = 0,013 < 1,17Mpa \end{cases}$$

⇒ Pas de risque de rupture par cisaillement, les armatures transversales ne sont pas nécessaires.

❖ Vérification à ELS :

D14 : dalle balcon (se trouve à l'extérieur), donc FN alors on doit vérifier la contrainte de compression d'acier σ_s .

*Vérification de la contrainte dans le béton :

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma_{bc}} = 0.6 f_{c28} = 15 \text{Mpa}$$

-Calcul de la position de l'axe neutre :

$$\frac{b \times y^{2}}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$\frac{100 \times y^{2}}{2} + 15 \times 2,51 \times y - 15 \times 2,51 \times 9 = 0$$

$$y = 2,25cm$$

$$I=b\frac{y^3}{3}+15A(d-y)^2$$

$$I = 2095,1cm^4$$

$$\sigma_{bc}$$
=1,54 Mpa < $\overline{\sigma_{bc}}$ =15 Mpa

*Vérification de la contrainte dans les aciers :

$$\sigma_s = \frac{15M_{ser}(d-y)}{I} < \overline{\sigma}_s = \min[\frac{2}{3} \text{ fe } ; 110\sqrt{\eta \times f_{t28}}] = 201,63 \text{Mpa}$$

$$\sigma_s = \frac{15\times1,44\times10^{-3}}{2095,1\times10^{-8}} (0,09-0,0225) = 69,59Mpa < \overline{\sigma}_s$$

-Le tableau ci-dessous résume les résultats des vérifications à ELS de panneau D14 :

Position	Sens	M_{ser}			$\sigma_{bc} \leq$	$\sigma_{bc} \leq \overline{\sigma_{bc}}$ observation		$\sigma_{\scriptscriptstyle S} \leq \overline{\sigma}_{\scriptscriptstyle S}$		observation
		(KN.m)			σ_{bc}	$\overline{\sigma_{bc}}$		$\sigma_{_S}$	$ar{\sigma_{\!\scriptscriptstyle S}}$	
Travée	X-X	1,44	2,25	2095,1	1,54	15	Vérifiée	69,59	201,63	Vérifiée
	у-у	0,55	2,25	2095,1	0,59	15	Vérifiée	26,58	201,63	Vérifiée
Appui	x-x ;y-y	-0,84	2,25	2095,1	0,90	15	Vérifiée	40,59	201,63	vérifiée

<u>Tableau II.31</u>.tableau des vérifications de la dalle 14 à l'ELS

Etat limite de déformation (la flèche) :

Conditions	Sens x	Sens y	observation
$1) \frac{h_{t}}{l_{x}} > max[\frac{3}{80}; \frac{Mt}{20M_{0}^{s}}]$	0.086>0.042	0.045>0.042	vérifiée
$2) \frac{A_s}{b \times d} < \frac{2}{fe}$	$2.78 \times 10^{-3} > 0.042$	$2.78 \times 10^{-3} > 0.042$	vérifiée
3) lx<8m	1.4m<8m	0.045<8m	vérifiée

Tableau II.32. tableau des vérifications de la flèche de la dalle D14

Donc : la vérification de la flèche n'est pas nécessaire

B-La dalle sur 4 appuis (D8):

G=6,11KN/m² ; Q=1,5KN/m² ;FPN ; e=15cm 1x=5,7m ; 1y=6m ; $\rho=0,95>0,4$

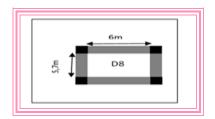


Figure II .22: Dalle sur 4 appuis(D8)

C- La dalle sur 4 appuis (D13):

G=5,36KN/m² ; Q=1,5KN/m² ;FPN ; e=12cm lx=1,63m ; ly=3,25m ; ρ =0,5>0,4

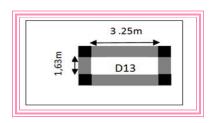


Figure II .23: Dalle sur 4 appuis(D13)

-Les résultats de ferraillage et des vérifications sont résumés dans le tableau ci-dessous :

	Position	Sens	(K	M (N.m)	A ^{cal} (cm²/ml)	A ^{min} (cm²/ml	A ^{opté} (cm²/ml)	$\tau_u \leq \bar{\tau}(Mpa)$	$\sigma_{bc} \le \overline{\sigma_{bc}}$	$f \leq \bar{f}$
	Travée	X-X	12,1 4	10,14	2,93	1,23	5HA10 =3,93cm ²	0,038≤ 1.17	7,02 ≤ 15	10,2≤10,7
D8		у-у	10,7 8	9,37	2,60	1,20	5HA10 =3,93cm ²	0,005≤ 1.17	6,48 ≤ 15	10,80≤ 11
	Appui	хх ; y-y	- 7,14	-5,07	1,72	1,23	5HA10 =3,93cm ²	-	3,51 ≤ 15	_
	Travée	X-X	2,06 5	1.55	0,67	1,2	5HA8 =2,51cm ²	0.137≤ 1.17	1.66 ≤ 15	
D13		у-у	0,52	0.57	0,17	0,96	5HA8 =2,51cm ²	0.118≤ 1.17	0.61 ≤ 15	2,86≤6.5
	Appui	хх ; y-y	- 1,22	-0.91	0,39	1,2	5HA8 =2,51cm ²	_	2.04 ≤ 15	_

Tableau II.33: tableau de calcul de ferraillages et des vérifications des dalles 8 et 13

Remarque:

D8et D13 : dalle pleine (se trouve à l'intérieur), donc FPN alors la vérification de la contrainte de compression d'acier σ_s n'est pas nécessaire.

-Le tableau ci-dessous résume les résultats des vérifications à ELS de panneau D8 et D13 :

D) Dalle sur 3 appuis (D6):

Les caractéristiques de la dalle :

 $G=5,36KN/m^2$; $Q=3,5KN/m^2$; FN; e=12cm

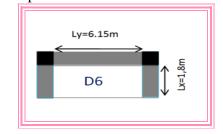
1x=1.8m; 1y=6.15m; $\rho=0.29 < 0.4$

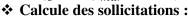
 $\gamma_{mur}=1$ KN/m²

 $P_{mur} = \gamma_{mur} \times b \times h_{garde\ corps} = 1 \text{KN/m}^2$

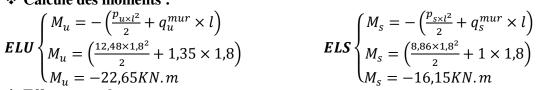
-Remarque

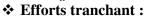
La dalle fléchit dans un sens et soumise à une charge Concentrée (Garde-corps), donc le calcul est assimilé




Figure II .24: Dalle sur 3 appuis(D6)

à une console en flexion simple.


-Evaluation des charges :


Le calcul se fait par une bande de 1ml

ELU
$$\begin{cases} \text{Pu} = (1,35\text{G} + 1,5\text{Q}) \times 1ml = 12,486\text{KN/m} \\ q_u^{mur} = 1,35p_{mur} = 1,35 \times 1 = 1,35KN/m \end{cases}$$
ELS
$$\begin{cases} \text{Ps} = (\text{G} + \text{Q}) \times 1ml = 8,86\text{KN/m} \\ q_s^{mur} = p_{mur} = 1KN/m \end{cases}$$

Calcule des moments :

 $Vu = pu \times l + q_u^{mur}$

 $Vu=12,48\times 1,8+1,35 \implies$

Vu=23,81KN

-Calcul de ferraillage à L'ELU:

-Les résultats de ferraillage sont résumés dans le tableau ci-dessous :

Position	Sens	M (KN.m)	$\mu_{ m bu}$	α	Z(m)	A ^{cal} (cm²/ml)	A ^{min} (cm²/ml)	A ^{opté} (cm²/ml)	S_t (cm)
Travée	X-X	22,65	0,197	0,277	0,080	8,13	96, 0	5H16=10,05cm ²	25

Tableau II.34:tableau de calcul de ferraillage de la dalle 6

Armatures de répartitions :

$$A_{r\acute{e}partition} = \frac{A_t^x}{3} = \frac{10,05}{3} = 3,35 \text{cm}^2$$
 Choix
$$\begin{cases} A_{r\acute{e}partition} \\ S_t = 20 cm \end{cases} = 5 \text{HA} 10 = 3,93 \text{cm}^2$$

❖ Vérification à L'ELU:

❖ Vérification de l'effort tranchant :

Type	Sens	V_u	$\tau_u \leq \bar{\tau}(\mathrm{Mpa})$		Observation
			$ au_u$	$ar{ au}$	
D6	X-X	11 ,15	0,12	1,17	vérifiée

Tableau II.35 : tableau de vérifications de la dalle D6 à l'ELU

- ❖ Vérification à L'ELS :
- **Vérification des contraintes:**

-Le tableau ci-dessous résume les résultats des vérifications à ELS de panneau D6:

Le tuoieur et dessous resume les resultats des verifications à EES de painieur E								00.			
	Position	Sens	M_{ser}	Y	$I(cm^4) \sigma_{bc} \leq \overline{\sigma_{bc}}$		Obs	Obs $\sigma_s \leq \overline{\sigma}_s$		Obs	
			(KN.m)	(cm)		σ_{bc}	$\overline{\sigma_{bc}}$		$\sigma_{\scriptscriptstyle S}$	$ar{\sigma_{\!\scriptscriptstyle S}}$	
	Nappe	X-X	16,15	3,91	5898,19	0,012	15	vérifiée	209,05	201,63	Non
	Supérieur										vérifiée

Tableau II.36: tableau de vérifications de la dalle 6 à l'ELS

-Remarque:

La contrainte de traction dans l'acier ($\sigma_s \leq \bar{\sigma}_s$) n'est pas vérifiée, on doit recalculer la section d'acier à L'ELS comme suit :

$$\beta = \frac{M_{ser}}{b \times d^2 \times \overline{\sigma}_s} = \frac{16,15 \times 10^{-3}}{1 \times 0,09^2 \times 201,63} = 9,88 \times 10^{-3} \qquad \Rightarrow \alpha' = \sqrt{90\beta(\frac{1-\alpha}{3-\alpha})} = 0,486$$

$$A_S = \frac{M_s}{d(1-\frac{\alpha'}{3})\overline{\sigma}_s} = \frac{16,15 \times 10^{-3}}{0,09(1-\frac{0,486}{3})201,63} = 10,62 \text{cm}^2$$

Choix des armatures : 6HA16=12,06cm²

Figure II. 25: schéma statique de la

Armatures de répartitions :

Armatures de repartitions:
$$A_{répartition} = \frac{A_s^x}{3} = \frac{12,06}{3} = 4,02 \text{cm}^2$$

$$Choix \begin{cases} A_{répartition} = 5\text{HA}12 = 5,65 \text{cm}^2 \\ S_t = 20 \text{cm} \end{cases}$$

Etat limite de déformation (la flèche) :

Sens condition	Sens x-x	observation
$\frac{h_t}{l_x} > max\left[\frac{3}{80}; \frac{Mt}{20M_0^s}\right]$	0.066m > 0.05	vérifiée
$\frac{A_s}{b \times d} < \frac{2}{fe}$	$13,4 \times 10^{-3} > 5 \times 10^{-3}$	Non vérifiée
lx≤8m	1,8	vérifiée

Tableau II.37.tableau de vérification des conditions de la flèche

-La deuxième condition n'est pas vérifiée selon le sens x, donc on doit vérifier la flèche dans ce sens.

Panneau de dalle	D6
Sens	X-X
l (m)	3,25
$f_{ji}(mm)$	0,0160
$f_{gi}(mm)$	0,0288
$f_{pi}(mm)$	0,0583
f_{gv} (mm)	0,0611
$\Delta f_{tot} (mm)$	0,074
f_{adm} (mm)	7,2
Observation	Vérifiée

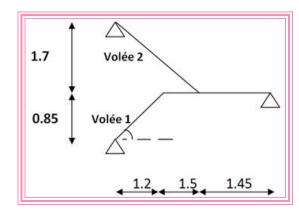
Tableau II.38 : tableau de la vérification de la flèche de la dalle 6

Les schémas de ferraillage : Les schémas de ferraillage des différents panneaux de dalle pleine sont insérés dans l'annexe n°05

II-7 Etudes des escaliers :

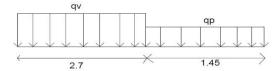
On va étudier la cage d'escalier de l'RDC, on exposera la volée 2 la plus Défavorable :

Volée :
$$\begin{cases} G_v = 8.65 \, kn/m^2 \\ Q_v = 2.5 \, kn/m^2 \end{cases}$$
 palier :
$$\begin{cases} G_p = 5.86 \, kn/m^2 \\ Q_p = 2.5 \, kn/m^2 \end{cases}$$


* Calcul du chargement revenant sur l'escalier :

$$\begin{cases} q_u^{\text{vol\'ee}} = (1.35\text{Gv} + 1.5\text{Qv}) * 1 = 15.43\text{kn/m} \\ q_u^{\text{palier}} = (1.35\text{Gp} + 1.5\text{Qp}) * 1 = 11.66\text{kn/m} \\ q_s^{\text{vol\'ee}} = (\text{Gv} + \text{Qv}) * 1 = 11.15\text{kn/m} \\ q_s^{\text{palier}} = (\text{Gp} + \text{Qp}) * 1 = 8.36\text{kn/m} \end{cases}$$

Calcul des réactions d'appuis :


$$\sum f_y = 0 \longrightarrow R_A + R_B = 2.7q_v + 1.45q_p$$

$$\sum M_{/A} = 0 \longrightarrow R_B = \frac{q_v * \frac{2.7}{2} * 2.7 + q_p * 1.45 * 3.425}{4.15}$$

<u>Figure II .26</u>: schéma représentatif Du RD**C**

RB:
$$\begin{cases} ELU = 27.5 \ kn \\ ELS = 19.80 \ kn \end{cases}$$
 RA: $\begin{cases} ELU = 31.06 \ kn \\ ELS = 22.43 kn \end{cases}$

A Calcul des sollicitations :

• Méthode de RDM:

Apres calcul RDM ont abouti à $(M_{\text{max}}(2.01\text{m}) = 31.26 \text{ kn. m})$ $V_{\text{max}} = 31.06 \text{ km}$

Calcul des moments réels :

$$M_T^{max} = 0.75 * 31.26 = 23.445 \text{ kn. m}$$

 $M_a^{max} = -0.5 * 31.26 = -15.63 \text{ kn. m}$

Figure II .27: schéma statique du RDC

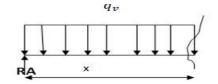


Figure II .28: coupe pour calcul des moments

Le ferraillage: il se fait a la flexion simple pour une section (b*e) = (1*0.18)

Localisation	Mu (KN.m)	μbu	A	Z (m)	A cal (cm²//ml)	Amin (cm²/ml)	A adoptée (cm²//ml)	St (cm)
Travée	23.44	0.0645	0.083	0.15	4.49	1.93	5HA12=5.65	25
En appui	-15.63	0.043	0.055	0.16	2.81	1.93	4HA10=3.14	25

<u>Tableau II.39</u>: tableau de calcul de ferraillage de l'escalier RDC

Vérification:

\Delta l'ELU: (l'effort tranchant max $V^{max} = 24.80 \ kn$)

$$\tau_u = \frac{v}{b*d} = \frac{31.06*10^{-3}}{1*0.16} = 0.194 \, Mpa \, \leq \, \tau^{adm} = \frac{0.07fc_{28}}{\gamma_b} = 1.167 \, Mpa \, \dots \dots v\acute{e}rifi\acute{e}e$$

 \rightarrow pas besoin des armatures transversales.

❖ Calcul des armatures de répartitions : (charge répartie)

En travée :
$$A_{rt} \ge \frac{A_t}{4} = 1.41 \frac{\text{cm}^2}{\text{ml}} \rightarrow \text{ on choisit } 4\text{HA8} = 2.01$$

En travée : $A_{rt} \ge \frac{A_t}{4} = 1.41 \frac{cm^2}{ml} \rightarrow \text{ on choisit } 4HA8 = 2.01$ En appuis : $A_{ra} \ge \frac{A_a}{4} = 0.785 \frac{cm^2}{ml} \rightarrow \text{ on choisit } 4HA8 = 2.01$

Vérification des espacements :

• Sens principale:

En travée : st = 25 cm \leq min(30; 33cm) = 33cm vérifiée **En appuis :** st =25 cm \leq min(30; 33cm) = 33cm vérifiée

❖ Vérifications à l'ELS :

• Vérification des contraintes dans le béton :

$$\sigma_{\mathrm{bc}} = \frac{\mathrm{M_{ser}*y}}{\mathrm{I}} \leq \overline{\sigma_{\mathrm{bc}}} = 0.6 * \mathrm{fc_{28}} = 15 \mathrm{\ Mpa}$$

Position	MserKN. M	Y (cm)	I (cm ⁴)	σ_{bc} (MPA)	$\overline{\sigma_{bc}}$ (MPA)	Observation $\sigma_{bc} \leq \overline{\sigma_{bc}}$
Travée	16.92	4.43	14242.99	5.26	15	Vérifiée
Appuis	-11.28	3.56	9373.15	4.28	15	Vérifiée

Tableau II.40: Tableau de vérification des contraintes de l'escalier RDC

Vérification de la flèche :

 \rightarrow la 1ère condition n'est pas vérifiée, la vérifiation de la fleche est nécessaire.

,			$= 109.347 M_{1}$ $= 92.157 M_{2}$ $= 172.52 M_{2}$	pa		
$\begin{array}{c c} f_{ji}(m) & f_{gi}(m) \end{array}$		$f_{pi}(m)$	$f_{gv}(\mathbf{m})$	$\Delta_f(\mathbf{m})$	$f_{adm}(m)$	Obs $\Delta_f < f_{adm}$
2.437*10-4	$3.34*10^{-4}$	1.02* 10 ⁻³	$8.78 * 10^{-4}$	$1.32*10^{-3}$	$8.3*~10^{-3}$	Vérifiée

Tableau II.41: tableau de vérification de la flèche de l'escalier

Schéma de ferraillage de l'RDC:

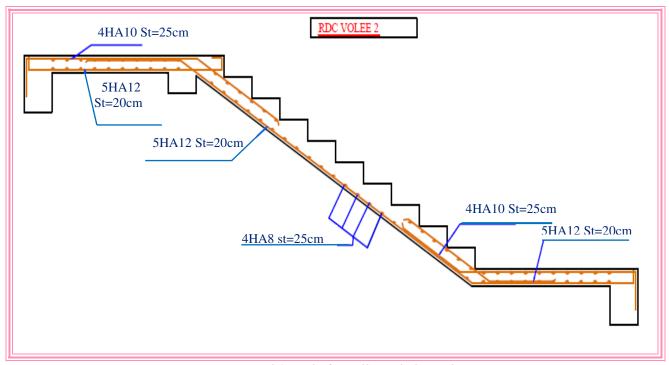
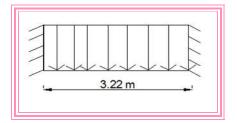


Figure II.29: schéma de ferraillage de l'escalier


II.8. Etude de la poutre palière :

On exposera le calcul détaillé de la poutre palière de l'RDC :

Dimensionnement:

$$\begin{cases} \frac{L}{15} \le h \le \frac{L}{10} & avec \ L = 3.22m \\ 24.4 \ cm \le h \le 32.2 cm \end{cases}$$

On opte pour
$$\begin{cases} h = 40cm \\ b = 30cm \end{cases}$$

<u>Figure II.30</u>: schéma statique de la poutre palière

Les dimensions de la poutre palière sont fixée base d'un calcul itératif afin de Satisfaire la contrainte de cisaillement importante

Vérification des exigences du RPA:

$$\begin{cases} h = 40cm \ge 30cm \\ b = 30cm \ge 20cm \\ \frac{h}{b} = 1 < 4 \end{cases}$$

- * Calcul de la poutre palière : l'étude se fera en flexion simple et à la torsion.
- **La Calcul à la flexion simple** : la poutre palière est soumise à :
 - Son poids propre : $g_0 = 25 * 0.3 * 0.4 = 3kn/m$

- Poids du mur : $p_{mur} = 2.8 * (1.7 0.35) = 3.78 \, kn/M$
- Charges transmise de la paillasse $\begin{cases} ELU: R_{Bu} = 27.50kn \\ ELS: R_{BS} = 19.80 \ kn \end{cases}$
- Moment de torsion : $M_{tor} = M_B * \frac{l}{2}$ (provoqué de la flexion de la paillasse)

***** Calcul des sollicitations :

$$q \begin{cases} \text{ELU:} \, q_u = 1.35 (g_0 + p_{mur}) + R_{Bu} = 36.65 \text{ kn/m} \\ \text{ELS:} \, q_s = (g_0 + p_{mur}) + R_{Bs} = 26.58 \frac{\text{kn}}{\text{m}} \end{cases}$$

! Les moments :

$$\begin{aligned} & \textbf{Moment isostatique} \begin{cases} \text{ELU}: \ M_0^u = \frac{q_u * l^2}{24} = 15.83 \ \text{kn. m} \\ \text{ELS } M_0^s = \frac{q_s * l^2}{24} = 11.48 \ \text{kn. m} \end{cases} \\ & \textbf{En trav\'ee} \begin{cases} \text{ELU}: \ M_t^u = 0.85 * M_0^u = 13.455 \text{kn. m} \\ \text{ELS } M_t^s = 0.85 * M_0^s = 9.76 \ \text{kn. m} \end{cases} \\ & \textbf{En appuis} \end{cases} \begin{cases} \text{ELU}: \ M_a^u = -0.5 * M_0^s = -7.915 \ \text{kn. m} \\ \text{ELS } M_a^s = -0.5 * M_0^s = -5.74 \ \text{kn. m} \end{cases} \\ & \clubsuit \end{aligned}$$

Ferraillage longitudinale à l'ELU : (b*h) = (0.3*0.4) :

Localisation	Mu (KN.m)	Mbu	A	Z (m)	Acal (cm²/ml)	Amin (cm²/ml)	Acal >Amin
Travée	13.455	0.0219	0.028	0.38	1,02	1.38	Non vérifiée
En appui	-7.915	0.0129	0.016	0.38	0.6	1.38	Non vérifiée

Tableau II.42. Tableau de calcul de ferraillage de la poutre palière

Vérification de la contrainte de cisaillement :

$$\tau_u = \frac{v^{max}}{b*d} = \frac{59*10^{-3}}{0.35*0.38} = 0.52Mpa < \bar{\tau} = 1.67Mpa$$

- **Armatures transversales:**
- On fixe st = 15cm en travée et st = 10cm en appuis et on calcul A_{tran} :

$$\begin{cases} 1)A_{tran} \ge \frac{0.4*b*st}{f_e} = 0.45cm^2 \\ 2)A_{tran} \ge \frac{b*st*(\tau_u - 0.3*ft_{28})}{0.9*f_e} = -1.51*10^{-3}cm^2 < 0 \end{cases} \rightarrow on \ prend \ A_{tran} = 0.45cm^2$$

- **❖** Calcul à la torsion :
- **Moment de torsion :**

$$M_{tor} = -MB * \frac{l}{2} = -15.63 * \frac{3.22}{2} = -25.16kn.m$$

On: $e = \frac{h}{6} = 6.6cm$; $\Omega = (b - e) * (h - e) = 781.56 \text{ cm}^2$; $U = 2 * (b - e + h - e) = 113.6cm$

***** Armatures longitudinales :

$$A_t^{tor} = \frac{M_{tor} * U * \gamma_s}{2 * \Omega * f_{st}} = \frac{25.16 * 1.136 * 10^{-3} - 1.15}{2 * 781.56 * 10^{-4} * 348} = 6.04 cm^2$$

Armatures transversales:

$$\begin{cases} \text{en trav\'e}: & A_t^{tor} = \frac{M_{tor}*st}{2*\Omega*f_{st}} = 0.69cm^2 \\ \text{en appuis} = 0.46 \ cm^2 \end{cases}$$

✓ Contrainte de cisaillement en torsion :

$$\begin{split} \tau^{tor} &= \frac{M^{tor}}{2 \times \Omega \times e} = \frac{25.16 \times 10^{-3}}{2 \times 0.0781.56 \times 0.066} = 2.44 \, MPa \\ \text{On vérifie } \tau^{tot}_{tor} &\leq \bar{\tau} \\ \tau^{tot}_{tor} &= \sqrt{\tau^2_{fst} + \tau^2_{tor}} = \sqrt{0.52^2 + 2.44^2} = 2.48 \, Mpa \, < \, \bar{\tau} = 3.33 \, Mpa \, \rightarrow \, 0.000 \, Mpa \, < \, 0.0000 \, Mpa \, < \,$$

pas de risque de repture par cisailement

- ***** Ferraillage global (flexion simple + torsion):
- √ Ferraillage longitudinal:
- En travée :

$$A_l^t = A_l^{F.S} + \frac{A_l^{tor}}{2} = 1.38 + \frac{6.04}{2} = 4.4 \text{ cm}^2$$

On opte pour $:3\emptyset12 + 1\emptyset14 = 4.93cm^2$

• Aux appuis :

$$A_l^a = A_l^{F.S} + \frac{A_l^{tor}}{2} = 1.38 + \frac{6.04}{2} = 4.4 cm^2$$

On opte pour : $3\emptyset 12 + 1\emptyset 14 = 4.93cm^2$

Armatures transversales:

$$A^{tran} = A^{F.S.}_{tran} + A^{tor}_{tran} = 0.45 + 0.69 = 1.14 \ cm^2$$

On opte pour : $4\emptyset 8 = 2.01 \ cm^2$ (un cadre + un étrier)

❖ Vérification des conditions du RPA des armatures longitudinales (art 7.5.2.1) :

Etant donné que les armatures des appuis sont prolongé, on aura la même section d'armatures tout le long de la poutre d'où la section à vérifiée est : $A_l^{tot} = A_l^{choisit} + A_a^{choisit} = 4.93 + 4.93 = 9.86cm^2$

$$\begin{cases} A_{min} = 0.5\% \times B = 6 \ cm^2 \\ A_{max} = 4\% \times B = 48 \ cm^2 \end{cases} \Rightarrow A_{min} < A_l^{tot} = 9.86 cm^2 \le A_{max} \dots \ v\'erifi\'ee$$

-Vérification à l'ELS:

Endroit	M (KN)	Y (cm)	I (cm ⁴)	σ_{bc} (MPa)	$\overline{\sigma_{bc}}$ (MPa)	Observation
travée	9.76	11.44	67138.75	1.66	15	Vérifiée
Appui inter	- 5.74	11.44	67138.75	0.98	15	Vérifiée

Tableau. II .43: Vérifications des contraintes à l'ELS.

-Vérification de la flèche :

Si les conditions suivantes ne sont pas vérifiées on doit calculée la flèche :

$$\begin{cases} \frac{h}{l} = 0.124 \ge \max\left(\frac{1}{16}; \frac{M_t}{10M_0}\right) = 0.084 \dots \text{Vérifiée} \\ \frac{A}{bd} = 0.00675 \le \frac{4.2}{fe} = 0.0105 \dots \text{Vérifiée} \\ l = 3.22m < 8m \end{cases}$$

Donc la vérification de la flèche n'est pas nécessaire.

-Schéma de ferraillage :

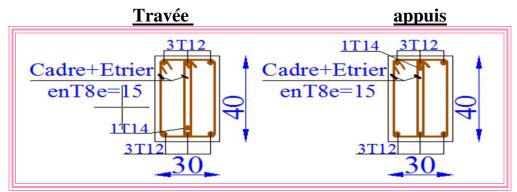


Figure II .31: Ferraillage de la poutre palière

Remarque : âpres étude des deux autres types de poutres palière on opte pour des poutres de (30* 30)

II.9. Etude de la poutre de chainage

C'est une poutre horizontale en béton armé qui sert à supporter le poids des cloisons, Son calcul se fait à la flexion simple

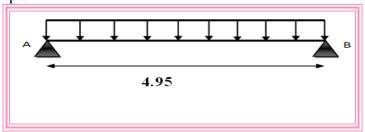


Figure II.32: Schéma statique de la poutre de chainage

Dimensionnement

• Selon la condition de la flèche :

$$\frac{l_{max}}{15} \le h \le \frac{l_{max}}{10} \Rightarrow \frac{495}{15} \le h \le \frac{495}{10} \Rightarrow 33 \le h \le 49.5$$
 Soit: h = 35 cm; b = 30cm

Calcul des sollicitations

Le chainage est conçu pour reprendre, outre son poids propre, le poids des cloisons, et de la dalle

- Poids propre de chainage : $G_p = 25 \times 0.35 \times 0.3 = 2.625 KN/m$
- Poids du mur : $G_m = 2.8 \times (3.06 0.15) = 8.148 \, KN/m$

• Poids de la dalle :
$$\begin{cases} p = 1.35G + 1.5Q = 10.498 \, kn/m^2 \\ p_{dalle} = \frac{p}{2} * \left(1 - \frac{\varphi^2}{3}\right) * lx = 13.86 kn/m \\ Q_0 = Q * b = 1.5 * 0.35 = 0.525 kn/m \end{cases}$$

D'où :
$$\begin{cases} q_u = 1.35 (G_p + p_{dalle} + G_m) + +1.5Q_0 = 33.92 \, KN/m \\ q_s = (G_p + G_m + p_{dalle} + Q_0) = 25.083 KN/m \end{cases}$$

$$\label{eq:moment_moment_moment} \text{Moment isostatique} \Rightarrow \begin{cases} M_u = \frac{q_u l^2}{8} = \frac{33.92 \times (4.95)^2}{8} = 103.89 \text{ KN. m} \\ V_u = \frac{q_u l}{2} = \frac{33.92 \times 4.95}{2} = 83.952 \text{ KN} \\ M_s = \frac{q_s l^2}{8} = \frac{25.083 \times (4.95)^2}{8} = 76.82 \text{ KN. m} \end{cases}$$

***** Correction des moments :

On majore le moment en travée de (0.85) en appui (0.5)

❖ Ferraillage de la poutre de chainage

Endroit	M _u (KN.m)	μ_{bu}	α	Z(m)	A^{cal} (cm^2)	A^{min} (cm^2)	A ^{choisis} (cm ²)
En travée	88.30	0.19	0.266	0.29	8.75	1.01	5HA14+1HA12 =8.83
En appui	-51.94	0.112	0.149	0.31	4.81	1.01	3HA12+1HA14 = 4.93

<u>Tableau. II .44</u>: Le ferraillage de la poutre de chainage

❖ Vérification à l'ELU :

• Effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} = \frac{83.952 \times 10^{-3}}{0.35 \times 0.38} = 0.63 \ MPa \le \overline{\tau_u} = 3.33 \ MPa \dots vérifiée$$

• Calcul des armatures transversales :

On fixe $S_t = 15$ cm en travée et st=10cm en appuis, puis on calcul A_{trans} :

$$\begin{cases} A_{trans} \geq \frac{0.4 \times b \times S_t}{f_e} \Rightarrow A_{trans} \geq 0.45 \ cm^2 \\ A_{tras} \geq \frac{b \times S_t \times (\tau_u - 0.3 f_{t28})}{0.9 \times f_e} < 0 \end{cases}$$

Soit un cadre de $\emptyset 8$ + une épingle de $\emptyset 8 \rightarrow A_t = 3\emptyset 8 = 1.51 \text{ cm}^2$

❖ Vérification à l'ELS :

• Vérification de la contrainte dans le béton :

• Les résultats obtenus sont résumés dans le tableau qui suit :

Endroit	M ^s (KN.m)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma_{bc}}$ (MPa)	Observation
En travée	65.297	13.22	74925.23	11.52	15	vérifiée
En appui	-38.41	10.53	49013.17	8.25	15	vérifiée

Tableau .II. 45: vérification des contraintes

❖ Vérification de la flèche :

$$\begin{cases} \frac{h}{l} \geq \max(\frac{1}{16}; \frac{M_t}{20 \times M_0}) \\ \frac{A}{b \times d} \leq \frac{4.2}{f_e} \end{cases} \Rightarrow \begin{cases} 0.07 \geq 0.0425 \dots \dots v\acute{e}rifi\acute{e}e \\ 0.00891 \leq 0.012 \dots v\acute{e}rifi\acute{e}e \\ 4.95 \ m < 8 \ m \dots v\acute{e}rifi\acute{e}e \end{cases}$$

La vérification de la flèche n'est pas nécessaire

-Schéma de ferraillage :

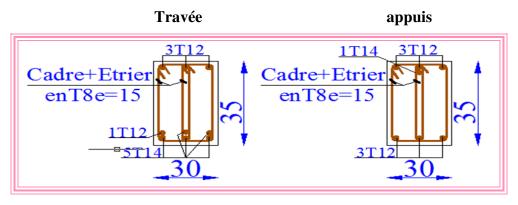
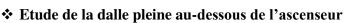


Figure II.33: Ferraillage de la poutre de chainage

Remarque:


Après étude des deux autres types de poutres de chainage on opte pour des poutres de (30×30) cm² pour tous les autres types.

II.10. Etude de l'ascenseur

L'ascenseur est un appareil mécanique, servant à déplacer verticalement des personnes ou chargements vers les différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique qui permet de déplacer la cabine.

Dans notre structure on utilise un ascenseur pour huit (08) personnes dont les caractéristiques sont les suivantes :

- L: Longueur de l'ascenseur =190cm.
- 1 : Largeur de l'ascenseur = 163cm.
- H: Hauteur de l'ascenseur = 220cm.
- F_c : Charge due à la cuvette =145KN.
- P_m : Charge due à l'ascenseur = 15KN.
- D_m : Charge due à la salle des machines = 51KN.
- La charge nominale est de 630 kg.
- La vitesse V =1m/s.

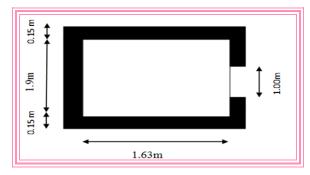


Figure II.34:schéma représentatif de l'ascenseur

• L'épaisseur de la dalle :

On a
$$l_x = 1.63m$$
; $l_y = 1.9 m$; $S = 3.097 m^2$.
$$\rho = \frac{l_x}{ly} = \frac{1.63}{1.9} = 0.857 > 0.4 \Longrightarrow la \ dalle \ travaille \ dans \ les \ 2 \ sens$$

$$\frac{163}{45} \le e \le \frac{163}{40} \to 3.62 \le e \le 4.075 \quad \Longrightarrow \text{On prend e} = 12 \text{cm} \ \text{pour 2h de coupe-feu}$$

- Evaluation des charges et surcharges : $g = D_m + P_m + P_{personne} = 51+15+6.3 = 72.3 \text{ KN}$
- Poids propre de la dalle et du revêtement : $G_p = 25 \times 0.12 = 3 \ KN/m^2$

Calcul pour un revêtement de 5 cm : $G_r = 22 \times 0.05 = 1.1 \, KN/m^2$

- Poids de l'ascenseur : $G_2 = \frac{F_c}{S} = \frac{145}{3.097} = 46.82 \ KN/m^2$
- Poids total: $G^{tot} = G_r + G_p + G_2 = 1.1 + 3 + 46.82 = 50.92KN/m^2$

• Combinaison d'action

$$\begin{cases} ELU \Longrightarrow q_u = 1.35G^{tot} + 1.5Q = 1.35 \times 50.92 + 1.5 \times 1 = 70.242 \ KN/m^2 \\ ELS \Longrightarrow q_s = 50.92 + 1 = 51.92KN/m^2 \end{cases}$$

❖ Calcul des sollicitations à l'ELU

$$\Rightarrow \rho = 0.86 \Rightarrow \begin{cases} \mu_x = 0.0496 \\ \mu_y = 0.7052 \end{cases} \Rightarrow \begin{cases} M_0^x = 0.0496 \times 70.242 \times (1.63)^2 = 9.256 \text{ KN. m} \\ M_0^y = 0.7052 \times 9.256 = 6.527 \text{KN. m} \end{cases}$$

Calcul des moments (compte tenu de l'encastrement)

En travée
$$\Rightarrow$$
 $\begin{cases} M_t^x = 0.75 \times 9.256 = 6.942 \ KN.m \\ M_t^y = 0.75 \times 6.527 = 4.895 \ KN.m \end{cases}$ En appui \Rightarrow $M_0^x = -0.5 \ M_0^x = -0.5 \times 9.256 = -4.628 \ KN.m \; ; \; M_0^y = -3.263 \ kn.m$

• Calcul du ferraillage : On fera le calcul de la dalle pour une bande de 1m de longueur et de 15cm d'épaisseur à la flexion simple.

Endroit	Sens	M (KN.m)	$\mu_{ m bu}$	α	Z(m)	A ^{cal} (cm ² /ml)	A _{min} (cm ² /ml)	Choix	s _t (cm)
Travée	X-X	6.942	0.0489	0.063	0.10	1.99	1.027	4HA10=3.14	25
Travee	Y-Y	4.895	0.0345	0.044	0.10	1.41	0.96	4HA8=2.01	25
Appui	X-X	-4.628	0.0326	0.041	0.10	1.33	1.21	4HA8=2.01	25
	Y-Y	-3.263	0.023	0.029	0.10	0.94	1.21	4HA8=2.01	25

Tableau. II 46 : Le ferraillage de dalle

Vérification de l'effort tranchant :

On doit vérifiée que :
$$\tau_u = \frac{v_u}{bd} = 0.39 \, MPA \le \overline{\tau_u} = 3.33 \, MPA$$

Pas besoin d'armatures transversales.

❖ Vérification à l'ELS

$$q_s = 60.80 \; KN/m^2 \Longrightarrow \; \rho = 0.86 \Longrightarrow \begin{cases} \mu_x = 0.0560 \\ \mu_y = 0.7933 \end{cases} \Longrightarrow \begin{cases} M_0^x = 7.80 \; KN.m \\ M_0^y = 6.19 \; KN.m \end{cases}$$

✓ Moments corrigés

Position	Sens	M (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc} \le \overline{\sigma_{bc}}$ (MPa)	Obs
Travée	x-x	5.85	2.63	3164.7	4.92<15	vérifiée
	у-у	4.642	2.17	2189.07	4.61<15	vérifiée
Appui	x-x	-3.9	2.17	2189.07	3.87<15	vérifiée

Tableau.II.47: La vérification des contraintes

Vérification à la flèche

• Sens X-X:
$$\begin{cases} \frac{e}{l_x} \ge \max(\frac{M_{tx}}{20 \times M_{0x}}, \frac{3}{80}) \\ \frac{A}{bd} < \frac{2}{f_e} \end{cases} \Rightarrow \begin{cases} 0.073 \ge 0.0375 \dots v\acute{e}rifi\acute{e}e \\ 0.00314 < 0.005 \dots v\acute{e}rifi\acute{e}e \end{cases}$$

• Sens Y-Y :
$$\begin{cases} 0.063 \ge 0.0375 & \dots & v\acute{e}rifi\acute{e}e \\ 0.000201 < 0.005 & \dots & v\acute{e}rifi\acute{e}e \end{cases}$$

Les deux conditions sont vérifiée dans les deux sens le calcul de la flèche est inutile.

Dalle de salle machine

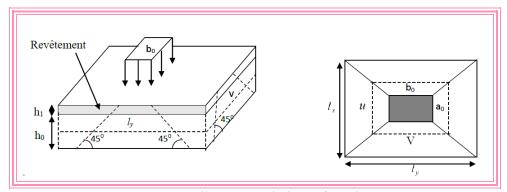


Figure II .35: Illustration de la surface d'impact.

On a:

$$\begin{cases}
U = a_0 + h_0 + 2\xi h_1 \\
V = b_0 + h_0 + 2\xi h_1
\end{cases}$$

Avec:

 a_0 et U sont les dimensions parallèles à Lx. b_0 et V sont les dimensions parallèles à Ly.

 $a_0 \times b_0 = 80 \times 80$ est la surface du chargement.

h₀ est l'épaisseur de la dalle pleine.
h₁ est l'épaisseur du revêtement moins rigide.

$$\xi = 0.75$$
 $h_1 = 5$ cm

On aura donc:

$$U = 80 + 14 + (2 \times 0.75 \times 5) = 101.5cm$$

 $V = 80 + 14 + (2 \times 0.75 \times 5) = 101.5cm$

• Sous charges réparties :

$$\begin{cases} q_u = 1.35G_1 + 1.5Q = 1.35*4.1 + 1.5*1.5 = 7.785\,kn/m^2 \\ q_s = G_1 + Q = 4.1 + 1.5 = 5.6\,kn/m^2 \;\; : \;\; avec\,G_1 = G_p + G_r = 3 + 1.1 = 4.1\,kn/m^2 \end{cases}$$

• Calcul des sollicitations :

ELU:
$$\begin{cases} M_0^{x1} = \mu_x * q_u * l_x^2 = 0.0496 * 7.785 * 1.63^2 = 1.025kn.m \\ M_0^{y1} = \mu_y * M_0^{x1} = 0.7052 * 1.025 = 0.723kn.m \end{cases}$$
ELS:
$$\begin{cases} M_0^{x1} = \mu_x * q_s * l_x^2 = 0.74kn.m \\ M_0^{y1} = \mu_y * M_0^{x1} = 0.52kn.m \end{cases}$$

• Sous charges concentrées :

$$\begin{cases} q'_u = 1.35G^{concentr\'e} + 1.5Q^{concentr\'e} = 1.35*66 + 1.5*6.3 = 98.55 \, kn/m^2 \\ q'_s = G^{concentr\'e} + Q^{concentr\'e} = 66 + 6.3 = 72.3 \, kn/m^2 \\ p_u^{concentr\'e} = q'_u \times (u * v) = 101.52 kn \\ p_s^{concentr\'e} = q'_s \times (u * v) = 74.48 kn \end{cases}$$

• Calcul des sollicitations :

ELU:
$$\begin{cases} M_0^{x2} = P_u \times (M_1 + \nu M_2) = 9.035kn. m \\ M_0^{y2} = P_u \times (M_2 + \nu M_1) = 7.41kn. m \end{cases}$$
 ELS:
$$\begin{cases} M_0^{x2} = 7.72kn. m \\ M_0^{y2} = 6.76kn. m \end{cases}$$

Avec:

 M_1 et M_2 sont des coefficients donnés par les **abaques de PIGEAU** en fonction de ρ .

Avec :
$$\alpha = \frac{U}{l_y}$$
 , $\beta = \frac{V}{l_y}$

$$\nu$$
: coefficient de poisson $\begin{cases} \nu = 0 \Rightarrow ELU \\ \nu = 0.2 \Rightarrow ELS \end{cases}$ Soit: $\rho = 0.86 \Rightarrow \begin{cases} \alpha = 0.62 \\ \beta = 0.53 \end{cases} \Rightarrow \begin{cases} M_1 = 0.089 \\ M_2 = 0.073 \end{cases}$

• Superpositions des moments :

Les moments agissant sur la dalle sont :

ELU:
$$\begin{cases} M_0^x = M_0^{x1} + M_0^{x2} = 1.025 + 9.035 = 10.06kn.m \\ M_0^y = M_0^{y1} + M_0^{y2} = 0.723 + 7.41 = 8.133kn.m \end{cases}$$
 ELS:
$$\begin{cases} M_0^x = 8.46 \ kn \\ M_0^y = 7.28 \ kn \end{cases}$$

• Les moments corrigés :

-En travée : - En appuis :

$$\mathbf{ELU} \begin{cases} M_t^x = 0.75 * M_0^x = 7.545kn.m \\ M_t^y = 0.75 * M_0^y = 6.09kn.m \end{cases} \quad \mathbf{ELS} : \begin{cases} M_t^x = 6.345kn.m \\ M_t^y = 5.46kn.m \end{cases} \quad \begin{cases} \mathbf{ELU} : M_a^x = -5.03kn.m \\ \mathbf{ELS} : M_a^x = -4.23kn.m \end{cases}$$

• Ferraillage: Le calcul se fera pour une bande de 1m de longueur b= 1 m, d=0.12 m

Endroit	Sens	M(KN.m)	μ_{bu}	α	Z(m)	A ^{cal} (cm ²)	A _{min} (cm ²)	choix	s _t (cm)
Travée	X-X	7.545	0.0369	0.047	0.12	1.81	1.2	4HA10=3.14	25
Travee	Y-Y	6.09	0.0298	0.038	0.12	1.46	1.12	4HA8=2.01	25
Appui		-5.03	0.0246	0.031	0.12	1.2	1.45	4HA8=2.01	25

Tableau II.48:Le ferraillage de la dalle

- Vérification à l'ELU :
- Vérification des espacements :

 $s_t \le \min(2e, 25cm) = 25 cm \dots v\acute{e}rifi\acute{e}e$

• Vérification au poinçonnement :

$$P_u \le 0.045 \times U_c \times h \times \frac{f_c}{\gamma_h}$$
 BAEL91 (Art A.5.2.4.2)

 P_u : Charge de calcul à L'ELU.

h: Hauteur de la dalle.

$$U_c = 2 \times (u + v) \implies U_c = 2 \times (101.5 + 101.5) \implies U_c = 406cm$$
; $P_u = 98.55 \text{ KN}$

$$P_u = 98.55 < 0.045 \times 406 \times 10^{-2} \times 0.14 \times \frac{25}{1.5} \times 10^3 = 426.3 \text{ KN}$$

Donc pas de risque de poinçonnement.

• Vérification de l'effort tranchant :

$$au_u = rac{V_{max}}{b imes d} \leq \overline{ au_u} = 3.33 \ MPa$$
On a: $v = u \Rightarrow V_{max} = rac{P_u}{3 imes v} = 32.36 \ KN \Rightarrow au_u = 0.269 \ MPa < \overline{ au_u} = 3.33 \ MPa \dots v\'erifi\'ee$

• Calcul à l'ELS :

• Vérification des contraintes

	Sens	M (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$ (MPa)	Obs
Γ	X-X	6.345	2.63	3164.7	5.28<15	vérifiée
ľ	у-у	5.46	2.17	2189.07	5.42<15	vérifiée
ľ	Appui	-4.23	2.17	2189.07	4.2<15	vérifiée

Tableau II.49: Vérification des contraintes

• Vérification de la flèche

Sens X-X: $\begin{cases} 0.074 > 0.0375 \\ 10^{-3} * 1.675 *< 5 * 10^{-3} \end{cases}$ $\begin{cases} 0.085 > 0.0375 \\ 2.62 * 10^{-3} < 5 * 10^{-3} \\ l = 1.63m < 8m \end{cases}$

Les conditions sont vérifiées dans les deux sens, donc le calcul de la flèche est inutile. **Schéma de ferraillage :**

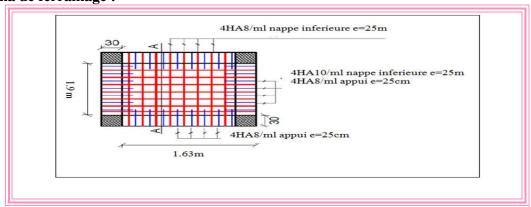
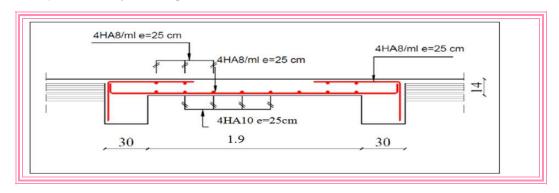



Figure II .36: ferraillage de dalles au dessous de l'ascenseur et dalle sale machine

<u>Figure II .37</u>: coupe A_A du panneau de dalle salle machine

II.11.Étude de l'acrotère :

L'acrotère est un relief constitué par un muret situé en bordure de la toiture, dans le prolongement de ses murs de façades.

L'acrotère est considéré comme une console encastrée dans le plancher soumise à son poids propre (G), à une force latérale due à l'effet sismique et à une surcharge horizontale (Q) due à la main courante.

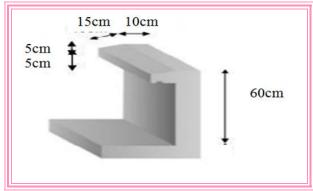


Figure II.38: les dimensions de l'acrotère

II.11.1. Hypothèses de calcul:

- L'acrotère est sollicité en flexion composée.
- La fissuration est considérée comme préjudiciable.
- Le calcul se fera pour une bande de un mètre linéaire.

II.11.2Évaluation des charges et surcharges :

> Verticales:

Surface (cm ²)	Poids propre (KN/ml)	Enduit ciment (KN/ml)	G (KN/ml)	Q (KN/ml)
712.5	1.78	0.03*0.6*20 = 0.324	2.104	1

<u>Tableau II .50</u> Les charges verticales

Horizontales : (dues au séisme).

L'acrotère est soumis : $F_P = 4*A*C_P*W_P$ (RPA99 ART.6.2.3)

- + F_p : une force horizontale due au séisme
- **A**: Coefficient d'accélération de zone A=0.15, obtenu dans le tableau (4-1) du **RPA99**
- ♣ C_P: Facteur de force horizontale variant entre 0.3 et 0.8 (**Tab. 6.1** du **RPA99**).
- **♣ W**_P: poids de l'acrotère

$$F_p = 4 * 0.15 * 0.8 * 2.104 \implies F_p = 1.01 \text{ KN}$$

NB: La section de calcul en flexion composée sera de (100*10) cm², car le calcul se fait pour une bande de 1 mètre linéaire.

II.11.3. Calcul des sollicitations :

A.Calcul du centre de gravité : $x_g = \frac{\sum S_i * x_i}{\sum S_i}$ et $y_g = \frac{\sum S_i * y_i}{\sum S_i}$

Section	X(cm)	Y(cm)	X _G (cm)	$X_{G}(cm)$
S1=600cm ²	5	30	6.95	33.77
S2=37.5cm ²	17.5	56.67		
S3=75cm ²	17.5	42.5		

<u>Tableau II .51</u> Résumé de calcule de centre de gravité

A- L'acrotère est soumis aux :

$$N_G = 2.104 \text{kn}$$
 \longrightarrow $M_G = 0$

$$Q = 1KN/ml$$
 \Longrightarrow $M_0 = Q * h = 0.6 KN. m$

$$F_p = 1.01 \text{ KN}$$
 \longrightarrow $M_{F_p} = F_p * y_g = 0.341 \text{ KN. m}$

NB: La section dangereuse se situe à l'encastrement.

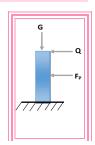


Figure II .39: schémas statique de l'acrotère

Sollicitation	RPA 99/2003	ELU	ELS
	$G + Q + F_P$	1,35*G + 1,5*Q	G+Q
N (KN)	2.104	2.84	2.104
M (KN)	0.941	0,9	0,6

<u>Tableau II.52:</u> Différentes combinaisons à utiliser

Calcul de l'excentricité :

$$e_1 = \frac{M_u}{N_u} \Longrightarrow e_1 = \frac{0.9}{2.84} = 0.31 \, m > \frac{h}{6} = 0.1 \, m$$

 $e_1 > \frac{h}{6} \Longrightarrow$ Le centre de pression se trouve à l'extérieur du noyau central donc la section est partiellement comprimée, le ferraillage se fait par assimilation à la flexion simple.

Le risque de flambement développé par l'effort de compression conduit à ajouter e_a et e_2 . Tels que :

 e_a : Excentricité additionnelle traduisant les imperfections géométriques initiales.

 e_2 : Excentricité due aux effets du second ordre, liés à la déformation de la structure.

$$e_a = \max\left(2 \ cm, \frac{h}{250}\right) = \max(2 \ cm, 0.24cm)$$

$$e_2 = \frac{3 \times l_f^2 \times (2 + \emptyset \times \alpha)}{h_0 \times 10^4}$$
 ; $\alpha = \frac{M_G}{M_G + M_Q}$

$$M_G = 0 \Longrightarrow \alpha = 0.$$

 \emptyset : c'est le rapport de la déformation finale due au fluage à la déformation instantanée sous la charge considérée.

 α : Le rapport du au premier ordre, dû aux charges permanentes, au moment total du premier ordre, le coefficient α est compris entre 0 et 1.

 l_f : Longueur de flambement ; $l_f = 2 \times h = 1.2 \ m$

 h_0 : Hauteur de section qui est égale à 10 cm.

Donc:
$$e_2 = \frac{3 \times 1.2^2 \times 2}{0.1 \times 10^4} = 0.00864 \, m$$

$$e = e_1 + e_2 + e_a \implies e = 0.338$$

Les sollicitations corrigées pour le calcul en flexion composée sont :

$$N_u = 2.84 \text{ KN}$$
 ; $M_u = N_u \times e = 2.84 \times 0.338 = 0.96 \text{ KN. m}$

❖ Ferraillage:

LU:
$$h = 0.10m$$
 $d = 0.08 m$; $b = 1 m$

L'acrotère, est sollicité en flexion composée, mais le calcul se fera par assimilation à la flexion simple : $M_{uA} = M_{uG} + N_u * (d - \frac{h}{2})$

 \checkmark M_{uG} et N_u : les sollicitations au centre de gravité de la section du béton seul.

 \checkmark M_{uA}: moment de flexion évalué au niveau de l'armature

$$M_{uA} = 0.96 + 2.84 \times \left(0.08 - \frac{0.10}{2}\right) = 1.04 \text{ KN. m}$$

• Flexion simple :

Mu _A (KN	.m) α	Z(m)	A _s (cm ²)	A _{min} (cm ²)	A ^{adopté} (cm ²)	
1.04	0.0143	0.08	0.291	0.96	4HA8=2.01	

Tableau II.53:Le ferraillage de l'acrotère

- Armatures de répartition : $A_r = A_s / 4 = 2.01 / 4 = 0.5025 \text{ cm}^2 \Rightarrow A_r = 4 \% 6 = (1.13 \text{ cm}^2/\text{ml}).$
- Espacement :
- 1. Armatures principale: $S_t \le 100/4 = 25 \text{ cm} \rightarrow \text{ on adopte } S_t = 25 \text{ cm}$.
- 2. Armatures de répartitions : $S_t \le 60/4 = 15$ cm \rightarrow on adopte $S_t = 15$ cm.
 - Vérification au cisaillement :
 - **ELU**: $V_u = 1.5 \times Q = 1.5 \times 1 = 1.5 KN$

$$\tau_u = \frac{V_u}{b \times d} = \frac{1.5 \times 10^{-3}}{1 \times 0.08} = 0.0187 \text{ MPa} < \overline{\tau} = \min(\frac{0.15 f_{c28}}{\gamma_b}; 4 \text{ MPa}) = 2.5 \text{ MPa} \dots \text{ vérifiée}$$

• Situation accidentelle : $V_u = F_p + Q = 1.01 + 1 = 2.01 \, KN$

$$\tau_u = \frac{V_u}{b \times d} = \frac{2.01 \times 10^{-3}}{1 \times 0.08} = 0.025 \, MPa < \overline{\tau} = 2.5 \, MPa \dots \dots \dots \dots vérifiée$$

• ELS : (vérification des contraintes).

$$\begin{cases} \sigma_{bc} = \frac{N_{ser} \times y}{\mu_t} \\ \sigma_{st} = 15 \times N_{ser} \times \frac{(d-y)}{\mu_t} \end{cases} \text{ et } \begin{cases} \overline{\sigma_{bc}} = 0.6 \times f_{c28} \\ \overline{\sigma_{st}} = \min\left(\frac{2}{3}f_e; 110\sqrt{\eta f_{t28}}\right) \end{cases}$$

 $M_{ser} = 0.6 \ KN.m$, $N_{ser} = 2.104 \ KN$; d = 0.08m

• Position de l'axe neutre :

$$\checkmark$$
 $c = d - e_1$

$$\checkmark e_1 = \frac{M_{Ser}}{N_{Ser}} + \left(d - \frac{h}{2}\right) = \left(\frac{0.6}{2.104} + \left(0.08 - \frac{0.1}{2}\right)\right) = 0.315 \ m$$

 $\checkmark~e_1>d\Longrightarrow$ c à l'extérieur de la section $\Longrightarrow c=0.08-0.315=-0.235m$

$$p = -3*c^{2} + (d-c)*\frac{90*A_{s}}{b}.$$

$$q = -2*c^{3} - (d-c)^{2}*\frac{90*A_{s}}{b}.$$
D'où :
$$\begin{cases} P = -0.16 \ m^{2} \\ q = 0.024 \ m^{3} \end{cases}$$

Pour résoudre l'équation $y_c^3 + p y_c + q = 0$, avec $y = y_c + c$;

On calcul le
$$\Delta = q^2 + \frac{4p^3}{27}$$

Si $\Delta < 0 \Rightarrow$ on a trois racines réelles :

$$\begin{cases} y_{c1} = a\cos\frac{\varphi}{3} \\ y_{c2} = a\cos\left(\frac{\varphi}{3} + 120\right) \\ y_{c3} = a\cos\left(\frac{\varphi}{3} + 240\right) \end{cases}$$
 Avec :
$$\begin{cases} a = 2\sqrt{\frac{-p}{3}} \\ \varphi = \cos^{-1}\left(\frac{3q}{2p}\sqrt{\frac{-3}{p}}\right) \end{cases}$$
 Si $\Delta \ge 0 \Rightarrow on\ a\ une\ seule\ racine\ r\'eelle$:

On calcul
$$\Rightarrow$$

$$\begin{cases} t = (\sqrt{\Delta} - q) \\ z = t^{1/3} \\ y_c = z - \frac{p}{3z} \end{cases}$$

Dans notre cas, on a

$\Delta = -3.081 * 10^{-5} < 0$								
a = 0.462	$\varphi = 166.97^{\circ}$							
$y_{c1} = 0.261 \text{m}$	$y_1 = 0.026 \text{ m}$							
$y_{c2} = -0.461 \text{m}$	y ₂ = -0.696 m							
$y_{c3} = 0.2m$	$y_3 = -0.035 \text{ m}$							

Tableau II .54: calcul de la position de l'axe neutre

On a :
$$y = y_1 = 0.026 \text{ m}$$

 $\mu_t = \frac{b \times y^2}{2} - 15 \times A \times (d - y) \Rightarrow \mu_t = \frac{1 \times (0.026)^2}{2} - 15 \times 2.01 \times 10^{-4} \times (0.07 - 0.026) = 2.05 \times 10^{-4} \text{ m}^3$

$$\begin{cases} \sigma_{bc} = \frac{2.104 \times 10^{-3} \times 0.026}{2.05 \times 10^{-4}} = 0.267 MPa & < \overline{\sigma}_{bc} = 0.6 \times 25 = 15 MPa & \dots \text{v\'erifi\'ee} \\ \sigma_{st} = 15 \times 2.104 \times 10^{-3} \times \frac{(0.07 - 0.026)}{2.05 \times 10^{-4}} = 6.77 & MPa & < \overline{\sigma}_{st} = 201.64 MPa & \dots \text{v\'erifi\'ee} \end{cases}$$

-Schéma de Ferraillage :

Figure II.40: Schéma de ferraillage de l'acrotère

Chapitre III

Étude dynamique

III .1 Introduction

Le séisme est le risque naturel le plus dangereux qui cause plus de dégâts, face à ce risque et à l'impossibilité de le prévoir, il est indispensable de prendre au sérieux l'étude sismique fin de construire des structures pouvant résister à de tel phénomène et de minimiser les conséquences, d'où la nécessité d'une étude dynamique qui nous permet de déterminer les caractéristiques d'une structure afin de prévoir son comportement sous l'effet du séisme.

III .2 Modélisation:

Pour la modélisation de notre structure on a fait appel au logiciel ETABS 16 qui est destiné à la conception et l'analyse des structures, et ouvrages de génie civil catégorie bâtiments.

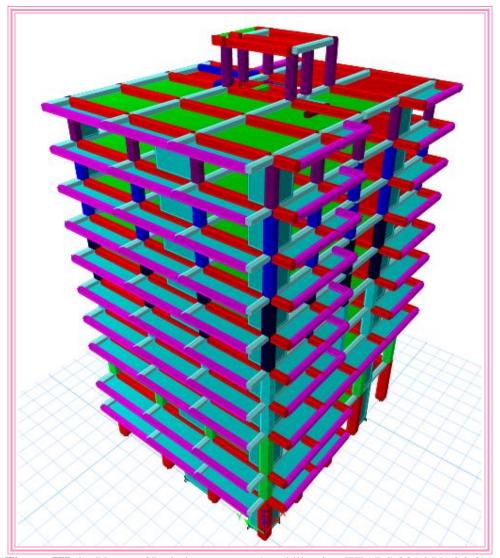


Figure III-1: Vue en 3D de la structure (modélisation ETABS 2016 V16.2.0)

Remarque:

Dans le but d'avoir un bon comportement de la structure et de satisfaire toutes les exigences de l'RPA, plusieurs essais de disposition de voiles ainsi qu'un redimensionnement des éléments principaux ont été envisagés

❖ Les dimensions définitives des éléments sont montrées dans le tableau suivant :

Niveaux	RDC	1 ^{er} et 2 ^{ème}	3 ^{ème} et	5 ^{ème} et 6 ^{ème} étage	7 ^{ème}	8 ^{ème}	9ème étage	T.innac	
		étage	4 ^{ème} étage		étage	étage	T acess		
Poteaux (cm ²)	(75*75)	(70*70)	(65*65)	(60*60)	(55*55)	(50*50)	(45*45)	(40*40)	
Voiles (cm)		épaisseur : 20cm							
P.Principale		(30×50)							
P.secondaire		(30×40)							

Tableau III.1. Dimensions finales des éléments structuraux

III .3.Disposition des voiles de contreventement

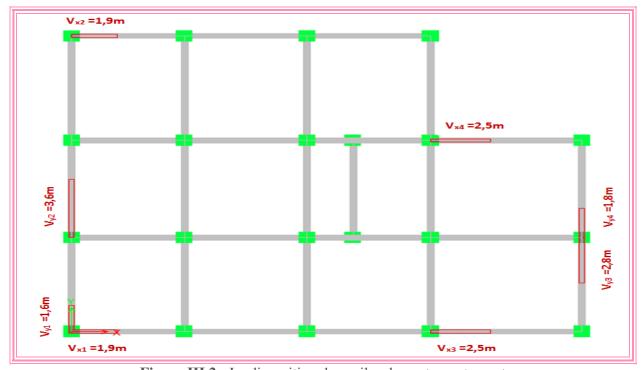


Figure III.2: La disposition des voiles de contreventement

III .4 La méthode de calcul utilisée :

Pour ce qui est de notre structure, les conditions d'application de la méthode statique équivalente ne sont pas réunis pour cause de sa hauteur qui dépasse largement les 23m, elle est irrégulière en plan, se situe en zone II_a et appartient au groupe d'usage 2. Selon les exigences du RPA99/version2003, la méthode à utiliser dans ce cas est celle de l'analyse modale spectrale, avec calcul de l'effort sismique à la base par la méthode statique équivalente pour une vérification ultérieure (RPA99/version2003 article 4.3.6).

III .4.1 Méthode Dynamique Modale Spectrale (RPA99V2003 article 4.3) Principe :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse (introduit par le logiciel ETABS) le calcul Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

$$L'action sismique est représentée par le spectre de calcul suivant : \\ \frac{S_a}{g} = \begin{cases} 1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\ 2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \end{cases} \quad RPA99 \ (Formule 4.13) \\ 2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\ 2.5 \times \eta \times (1.25A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) \quad T > 3.0 \text{ s} \end{cases}$$

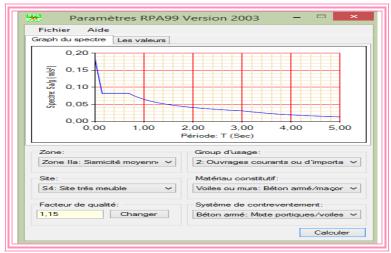


Figure III-3 : Spectre de réponse.

III .5. Calcul de la force sismique V statique :

La force sismique totale appliquée à la base de la structure V, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V_{st} = \frac{A. D. Q}{R} W (RPA99/2003Art (4.2.3))$$

Tel que:

✓ A : Coefficient d'accélération de la zone (RPA99V2003 Tableaux 4.1_) (Grouped'usage2 (ZoneII_a \Longrightarrow A = 0.15

✓ R: Coefficient de comportement global de la structure (RPA99V2003 Tableau4.3)

Dans le cas de notre projet, on adopte pour un système de contreventement mixte portiques/voiles avec justification de l'interaction \Rightarrow **R** = 5.

✓ D: Facteur d'amplification dynamique moyen (RPA99V2003_Tableau 4.2_)

Le calcul de ce facteur dépend, de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta {T_2/T} \\ 2.5\eta {T_2/T} \\ 2.5\eta {T_2/3} \\ 0 \le T \le 3.0 \text{ s} \end{cases}$$

$$T_2 \le T \le 3.0 \text{ s}$$

$$T \ge 3.0 \text{ s}$$

$$T \ge 3.0 \text{ s}$$

D : Facteur de correction d'amortissement η donnée par la formule :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7 \text{RPA} 99/2003 \text{ (Formule 4.3)}$$

Avec : ξ est le pourcentage d'amortissement critique Pour notre cas, on a un remplissage dense et un système mixte :

$$\xi = 10\%$$
 D'où $\eta = 0.76$

On a un site très meuble
$$S_4 \Rightarrow \begin{cases} T_1 = 0.15s \\ T_2 = 0.7s \end{cases}$$
 (RPA99/2003 Tableau 4.7_)

Avec : T1, T2 : périodes caractéristiques associé à la catégorie de site.

✓ Calcul de la période fondamentale de la structure :

Le contreventement de notre structure est assuré par un système mixte (voiles/portiques), donc :

$$\Rightarrow \begin{cases} T = C_T H^{3/4} & RPA99V2003 (Formule 4 - 6) \\ T = \frac{0.09H}{\sqrt{L}} & RPA99V2003 (Formule 4 - 7) \end{cases}$$

Tel que:

 $C_T = 0.05$: coefficient qui dépend du système de contreventement utilisé. **RPA99/2003** (**Tableau 4.6**)

H = 34,51 m: hauteur total du bâtiment.

L = dimension maximal du bâtiment à sa base dans le sens de calcul.

$$\begin{cases}
L_x = 22m \\
L_y = 19m
\end{cases}$$

Ce qui donne pour les deux sens :

$$D = 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} \qquad \Rightarrow \begin{cases} D_x = 1,66s \\ D_y = 1,58s \end{cases}$$

✓ Facteur de qualité Q (RPA99V2003 (4-4) :

N°	Critère (q)	Observée	P _q /xx	Observée	P _q /yy
1	Conditions minimales sur les files de contreventement	Non	0.05	Non	0.05

2	Redondance en plan	Non	0,05	Non	0,05
3	Régularité en plan	Non	0.05	Non	0.05
4	Régularité en élévation	Oui	0	Oui	0
5	Contrôle de la qualité des matériaux	Oui	0	Oui	0
6	Contrôle de la qualité de l'exécution	Oui	0	Oui	0

Tableau III. 2. valeurs des pénalités

La valeur de Q est déterminée par la formule : $Q = 1 + \sum_{1}^{5} P_q$ RPA99/2003 (Formule (4-4)

Avec:

 P_q : est la pénalité à retenir selon que le critère de qualité (q) est satisfait ou non.

D'où:
$$\begin{cases} Q_x = 1.15 \\ Q_y = 1.15 \end{cases}$$

✓ W: Poids total de la structure il est calculé par le logiciel ETABS2016

W est égal à la somme des poids W_i, calculés à chaque niveau (i):

$$W = \sum_{i=1}^{n} W_i avec W_i = W_{Gi} + \beta W_{Oi}$$
 RPA99/2003 (Formule(4 – 5))

Avec:

 W_{Gi} : poids du aux charges permanentes et à celles des équipements fixes éventuelles, solidaires de la structure.

W_{Qi}: charge d'exploitation.

β : coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, est donné par le tableau du *(RPA tableau 4.5)*

Dans notre cas :
$$\beta = \begin{cases} 0.2 \text{ (habitation pour les \'etages courants)} \\ 0.6 (comerciel pour RDC) \end{cases}$$

Le Poids total de la structure il est calculé par le logiciel ETABS2016

W=47992.0224 KN

La force sismique statique à la base de la structure est : $\begin{cases} V_x^{st} = 2748,50KN \\ V_y^{st} = 2616,05KN \end{cases}$

III .6. Mode de vibration et taux de participation des masses :

D'après le (RPA99/version 2003 Art4.3.4) les modes de vibration à retenir dans chacune des Deux directions d'excitations doit être tel que la somme des masses modales pour les modes retenus, soit égale à 90% au moins de la masse totale de la structure. Le tableau ci-dessous illustre les résultats des modes de vibration

Mode	Période (s)	UX	U_y	$SumU_x$	$SumU_y$
1	1,112	0,7782	0,0011	0,7782	0,0011

2	0,996	0,001	0,7378	0,7792	0,7389
3	0,821	0,0001	0,029	0,7793	0,7679
4	0,321	0,1189	0,0006	0,8982	0,7685
5	0,28	0,0006	0,1232	0,8988	0,8917
6	0,227	0,00002849	0,0018	0,8988	0,8935
7	0,161	0,031	0,0004	0,9298	0,8939
8	0,156	0,0004	0,0124	0,9302	0,9063
9	0,141	0,0022	0,00001741	0,9323	0,9063
10	0,134	0,0181	0,0006	0,9505	0,9069
11	0,125	0,0006	0,0452	0,9511	0,9521
12	0,102	0,00001284	0,0017	0,9511	0,9538

Tableau III .3. Période et taux de participation massique de la structure

Analyse des résultats :

- La participation modale en mode 1 selon la direction X est de $77,82\% \Rightarrow$ translation selon le sens X avec une période de Tx=1,112s.
- La participation modale en mode 2 selon la direction Y est de 73,78% ⇒translation selon le sens Y avec une période de Ty=0,996s.
- A travers le tableau on voit bien que la condition du RPA (Art 4.3.4) sur le nombre de modes à retenir est satisfaite en mode 7 dans le sens X et en mode 8 dans la direction Y.

Les modes de vibrations :

Les trois premiers modes de vibrations sont montrés sur les figures suivantes

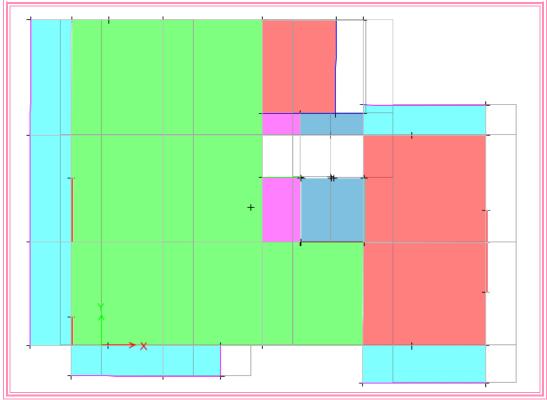


Figure III-4: 1er mode de vibration -translation selon X-X

Figure III-5: 2^{ème} mode de vibration -translation selon Y-Y

III .7. Vérification des résultats vis-à-vis du RPA 99/Version2003 :

III .7. 1. Vérification de la résultante des forces sismiques :

Après avoir calculé l'effort statique à la base et l'effort dynamique, le **RPA** prévoit de faire la vérification suivante :

$$V_{dyn} \ge 0.8V_{st}$$
 RPA99/2003 (Art4.3.6)

V_{dvn}: L'effort tranchant dynamique (calculé par la méthode spectral modal).

Si $V_{dyn} < 0.8 \ V_{st}$ il faudra augmenter tous les paramètres de la réponse par le rapport $\ 0.8 \ V_{st} / V_{dyn}$.

Sens	V _{statique} (KN)	0.8 V _{statique} (KN)	V _{dynamique} (KN)	Observation
X-X	2748.50	2198.802498	2372	Vérifiée
Y-Y	2616.05	2092.836113	2466	Vérifiée

Tableau III.4. Vérification de la résultante des forces sismiques à la base

III .7. 2. Vérification de l'effort normal réduit :

Il est exigé de faire la vérification à l'effort normal réduit pour éviter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.30$$
 (RPA99/2003 Art 7.4.3.1)

Tel que:

 N_d : l'effort normal maximal de calcul s'exerçant sur une section de béton et B_c : section du béton.

L'effort normal réduit dans les poteaux se vérifie sous les combinaisons sismiques suivantes :

$$\begin{cases} G + Q \pm E \\ 0.8G \pm E \end{cases}$$

Niveau	Section (cm ²)	N _d (KN)	Combinaison	v	observation
RDC	(75*75)	3717.5403	G+Q+EY	0.264	vérifiée
1	(70*70)	2885.4314	G+Q+EY	0.236	vérifiée
2	(70*70)	2774.3352	G+Q+EY	0.226	vérifiée
3	(65*65)	2097.9333	G+Q+EY	0.199	vérifiée
4	(65*65)	1755.595	G+Q+EY	0.166	vérifiée
5	(60*60)	1427.7048	G+Q+EY	0.159	vérifiée
6	(60*60)	1122.4241	G+Q+EY	0.136	vérifiée
7	(55*55)	836.9032	G+Q+EY	0.111	vérifiée
8	(50*50)	577.3771	G+Q+EY	0.092	vérifiée
9	(45*45)	342.8239	G+Q+EY	0.068	Vérifiée

Tableau III.5: Vérification de l'effort normal réduit dans les poteaux après le redimensionnement

III .7. 3. Justification de l'interaction (voiles-portiques) :

Pour justifier le contreventement mixte, le RPA exige que les charges horizontales soient reprises conjointement par les voiles et les portiques et cela selon leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.

- Les voiles de contreventement doivent reprendre au plus 20% des sollicitations dues aux charges verticales.
- Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant d'étage. (*RPA99/2003 Art 3.4.a*)

Sous charges verticales :

Les voiles doivent reprendre au plus 20% des sollicitations.

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 20\%$$

Les portiques doivent reprendre au moins 80% des sollicitations.

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\%$$

Les résultats de l'interaction sous charges verticales sont présentés dans le tableau suivant :

Niveau	Cł	narges verticales (KN)	(%) des charg	Observation		
TVIVCau	Portiques	Voiles	Total	Portiques	voiles		
RDC	36 510	9047	45557	80,14	19,86	vérifiée	

Tableau III.6. l'interaction sous charges vertical

Analyse des résultats :

On remarque que l'interaction voiles-portiques à la base sous charge verticale est vérifiée.

Sous charges horizontale

Les voiles doivent reprendre au plus 75% des sollicitations.

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 75\%$$

Les portiques doivent reprendre au moins 25% des sollicitations

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 25\%$$

Les résultats de l'interaction sous charges horizontales sont récapitulés dans le tableau suivant :

		Chargement h	orizontal (KN)		(%) du chargement horizontal				
an	sens	X-X	sens	Y-Y	sens	X-X	sen	s Y-Y	
Niveau	portiques voiles		portiques Voiles		portiques % voiles %		portiques %	voiles %	
RDC	615,7789	1756,753	629,3111	1837,428	25,95	74,05	25,51	74,49	
1	1139,49	1024,488	923,5251	1370,831	52,66	47,34	40,25	59,75	
2	750,8081	1167,93	547,0432	1563,072	39,13	60,87	25,92	74,08	
3	996,9472	776,5873	836,0487	1156,99	56,21	43,79	41,95	58,05	
4	928,1355	696,9908	802,6336	1010,277	57,11	42,89	44,27	55,73	
5	758,9419	690,3643	659,6359	938,6981	52,37	47,63	41,27	58,73	
6	732,0774	508,914	646,3869	710,5728	58,99	41,01	47,63	52,37	
7	566,4101	425,9751	511,199	577,2133	57,08	42,92	46,97	53,03	
8	431,1078	298,9847	402,1932	391,205	59,05	40,95	50,69	49,31	
9	400,2236	104,2349	386,8984	144,6719	79,34	20,66	72,78	27,22	

Tableau III.7: l'interaction sous charges horizontal

Analyse des résultats :

On remarque que, l'interaction sous charge horizontale est vérifiée pour tous les niveaux.

III .7. 4. Vérification vis-à-vis des déplacements de niveaux :

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0 % de la hauteur de l'étage. Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à :

$$\Delta_k = \delta_k - \delta_{k-1}$$
 (RPA99/ version 2003 _Art 5.10_)

Avec: $\delta_k = R\delta_{ek}$

 δ_k : Déplacement horizontal à chaque niveau "k" de la structure donné par le RPA99/2003

(Art 4.43).

 δ_{ek} : Déplacement dû aux forces sismiques Fi (y compris l'effet de torsion).

R : Coefficient de comportement.

Tous les résultats sont regroupés dans le tableau ci-après

eau	1 ()			Sens X-X	ζ		Sens Y-Y					Obs
Niveau	h _k (m)	δ_{ek} (cm)	δ_k (cm)	δ_{k-1} (cm)	Δ_k (cm)	$\frac{\Delta_k}{\mathrm{h_k}}$	δ_{ek} (cm)	δ_k (cm)	δ_{k-1} (cm)	Δ_k (cm)	$\frac{\Delta_k}{\mathrm{h_k}}$	
RDC	5.44	0,0422	0.211	0	0.211	0,0387	0,006	0,03	0	0,03	0.0055	vérifiée
1	3.06	0.082	0.41	0.211	0.199	0,0650	0,0128	0,064	0,03	0,034	0,0111	vérifiée
2	4.59	0.0937	0.4685	0.41	0.0585	0,0127	0,0147	0,073	0,064	0,0095	0.00206	vérifiée
3	3.06	0.0956	0.478	0.468	0.0095	0.0031	0,0158	0,079	0,0735	0.0055	0.001797	vérifiée
4	3.06	0.0924	0.462	0.478	-0.016	-0.0052	0,0156	0,078	0,079	-0.001	-0.00032	vérifiée
5	3.06	0,0876	0.438	0.462	-0.024	-0.0078	0,015	0,075	0,078	-0.003	-0.00098	vérifiée
6	3.06	0.0805	0.4025	0.438	-0,0355	-0,0116	0,014	0,07	0,075	-0,005	-0.00163	vérifiée
7	3.06	0.073	0.365	0.402	-0,0375	-0,0122	0,0129	0,064	0,07	-0.055	-0.00179	vérifiée
8	3.06	0.0652	0.326	0.365	-0,039	-0,0127	0,0117	0,058	0,0645	-0.006	-0.00196	vérifiée
9	3.06	0.0585	0.2925	0.326	-0,0335	-0,0109	0,0107	0,053	0,0585	-0,005	-0.01634	vérifiée

Tableau III.8. Vérification des déplacements relatifs

Analyse des résultats :

D'après les résultats obtenus dans le tableau, on peut dire que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage.

III .7. 5. Justification vis à vis de l'effet P- Δ :

Selon le RPA99/ version 2003 (Art 5.9), Les effets du 2° ordre (où effet P - Δ) sont les effets dus aux charges verticales après déplacement. Ils peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_k \Delta_k}{V_k h_k} \le 0.10$$

 P_k : Poids total de la structure et des charges d'exploitation associées au-dessus du niveau k.

$$P_k = \sum_{i=k}^{n} (W_{Gi} + \beta W_{qi})$$

 V_k : Effort tranchant d'étage au niveau k:

 Δ_k : Déplacement relatif du niveau k par rapport au niveau (k-1) et h_k : hauteur de l'étage k.

niveau	h _k	$P_{K}(KN)$		sens x-x			sens y- y		Obs
au	(m)		$\Delta_k(m)$	V _k (KN)	θ	$\Delta_{\rm k}$ (m)	V _k (KN)	θ	
RDC	5.44	47992,0224	0,00211	2372,3167	0,00784657	0.0003	2466,1014	0,0010732	vérifiée
1	3.06	42236,0422	0,00199	2315,5522	0,01186206	0.0003	2406,1569	0,00195037	vérifiée
2	4.59	37458,0585	0,000585	2208,3068	0,00216187	0.0001	2299,2481	0,00033719	vérifiée
3	3.06	31913,5139	9,5E-05	2039,1762	0,00048587	5.5E-05	2130,6428	0,00026922	vérifiée
4	3.06	27286,3891	-0,00016	1854,7944	-0,00076922	-1E-05	1943,1157	-4,5891E-05	vérifiée
5	3.06	22657,4248	-0,00024	1640,4161	-0,00108329	-3E-05	1719,9779	-0,00012915	vérifiée
6	3.06	18150,5609	-0,000355	1397,4846	-0,00150678	-0.0001	1465,3356	-0,0002024	vérifiée
7	3.06	13617,2031	-0,000375	1123,3976	-0,00148547	-5.5E-05	1179,9622	-0,00020742	vérifiée
8	3.06	9169,9251	-0,00039	813,8135	-0,0014361	-6E-05	858,4758	-0,00020944	vérifiée
9	3.06	47992,0224	0,00211	2372,3167	0,00784657	-0.0001	2466,1014	0,0010732	vérifiée

Tableau III.9. Vérification de l'effet P-Delta

D'après les résultats obtenus dans le tableau les efforts P-Δ peuvent être négligés.

III .7. 6. Conclusion:

L'objectif de ce chapitre a été l'étude de la structure sous sollicitations dynamiques pour se faire nous avons modélisé notre structure grâce au logiciel ETABS 16.

La disposition des voiles de contreventement a été un véritable challenge, l'aspect architectural ainsi que l'importance des travées de la structure ont rendu difficile ce choix de disposition

Finalement nous avons abouti à une disposition qui satisfait toutes les exigences du RPA 99V2003, Les sections des poteaux ont été augmentées.

Chapitre IV

Etude des éléments structuraux

IV-1 Introduction:

Dans le bâtiment, les éléments de contreventement (portiques et voiles) sont des éléments principaux qui assurent la stabilité de l'ouvrage avant et après le séisme, cependant ces éléments doivent être bien armés et disposés de telle sorte qu'ils puissent reprendre tous types de sollicitations.

IV-2 Etude des poutres :

Les poutres sont des éléments horizontaux sollicitées en flexion simple sous deux sollicitations, un effort tranchant qui permet de déterminer les armatures transversales, et un moment fléchissant permet de déterminer les armatures longitudinales.

Les efforts sont donnés par le logiciel Etabs2016 combinés sous les combinaisons les plus défavorables données par *RPA99V2003* comme suit :

ELU:
$$\begin{cases} 1,35G + 1,5Q \\ G + Q \pm E \\ 0,8G \pm E \end{cases}$$
 ELS: G+Q

Apres la détermination des sollicitations (M,N,V) on possède au calcul de ferraillage, dans notre cas on a opté pour :

- Des principales de (30*50) suivant la direction Y
- Des secondaires de (30*40) suivant la direction X

IV-2-1.Recommandations du RPA99V2003:

A-Coffrage: (RPA 99 V 2003 Art 7.5.1_)

$$\begin{cases} b \ge 20cm \\ h \ge 30cm \\ h/b \le 4 \\ b_{\max} \le 1.5h + b_1 \end{cases} \qquad \qquad \text{PP} \begin{cases} 30 \ge 20cm \\ 50 \ge 30cm \\ 1,66 \le 4 \\ b_{\max} \le 1.5h + b_1 \end{cases} \qquad \qquad \text{PS} \begin{cases} 30 \ge 20cm \\ 35 \ge 30cm \\ 1,16 \le 4 \\ b_{\max} \le 1.5h + b_1 \end{cases}$$

B-Ferraillage:

Longitudinales: (Art 7.5.2.1)

➤ Le pourcentage total et minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% (b×h) (en Zone IIa)

Poutre principale : A_{min} =0,5%(30×50)=7,50cm² Poutre secondaire : A_{min} =0,5%(30×40)=6cm²

- Le pourcentage total des maximum des aciers longitudinaux est de :
 - 4% (b×h) en zone courante
 - 6% (b×h) en zone de recouvrement

$$PP : \begin{cases} A_{\max}^{courante} = 4\% \left(30 \times 50\right) = 60cm^{2} \\ A_{\max}^{recouvrement} = 6\% \left(30 \times 50\right) = 90cm^{2} \end{cases}$$

$$PS : \begin{cases} A_{\max}^{couvrante} = 4\% \left(30 \times 40\right) = 4.8cm^{2} \\ A_{\max}^{recouvrement} = 6\% \left(30 \times 40\right) = 7.2cm^{2} \end{cases}$$

- La longueur minimale de recouvrement : 40 Øen zone II
- L'ancrage des armatures longitudinales supérieur et inferieur dans les poteaux de rive et d'angle doit être effectué conformément, et à la figure 7.5 de RPA avec des crochets de 90°.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U formant un carré ou rectangle, les directions de recouvrement de ces U doivent être alternées, cependant il faudra au moins un coté fermé des U d'un cadre soit disposé de sorte à la supposer à la poussé au vide des crochets droits des armatures longitudinales pour les poutres.
- ➤ On doit avoir un espacement maximum de 10cm entre deux cadres et un minimum de trois cadres par nœud.

Transversals: (Art 7.5.2.2)

$$A_t=3\% (S_t \times b)$$

 S_t : espacement maximal entre les armatures entre les armatures transversales :

-Zone nodale :
$$S_t \le \min\left(\frac{h}{4}; 12\emptyset_l\right)$$
 -Zone courante : $S_t \le \frac{h}{2}$

 \emptyset_1 : Le plus petit diamètre utilisé, mais dans le cas d'une section en travée avec armatures comprimées, c'est le diamètre le plus petit des aciers comprimés.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou l'encastrement.

IV-2-2 Calcul de ferraillage:

Le ferraillage adopté pour les poutres est calculé à partir des sollicitations maximales extraites du logiciel *ETABS 2016*, en respectant les exigences du *RPA 99 V2003*.

- Les sollicitations dans les poutres :

Poutre Principale	Niveau	M ^{travée} (KN.m)	combinaisons	M ^{Appui} (KN.m)	combinaisons	V ^{max} (KN.m)	combinaisons
PP	Service	224.26	0.8G+EY	-284.67	G+Q+EY	235.61	G+Q+EY
associée aux voiles	Etage courant	223.20	0.8G+EY	-316.08	G+Q+EY	258.89	G+Q+EY
	Terrasse	120.98	G+Q+EY	-158.05	G+Q+EY	109.51	G+Q-EY
PP non	Service	150.47	0.8G+EY	-177.97	G+Q+EY	116.96	G+Q+EY
associée aux voiles	Etage courant	173.77	0.8G+EY	-206.79	G+Q+EY	122.89	G+Q+EY
	Terrasse	120.98	G+Q+EY	-158.05	G+Q+EY	109.51	G+Q-EY

<u>Tableau IV.1</u>.Les sollicitations maximales dans les poutres principales

Poutre secondaire	Niveau	Moment (KN.m)	combinaisons	M ^{Appui} (KN.m)	combinaisons	V ^{max} (KN.m)	Combinaisons
PS associée	Service	103.97	G+Q+EX	-144.81	G+Q+EX	118.30	G+Q+EX
aux escaliers	Etage courant	114.16	G+Q+EX	-162.81	G+Q+EX	400.50	G+Q+EX
	Terrasse	58.53	G+Q+EX	-104.27	G+Q+EX	65.95	G+Q+EX
PS non	Service	103.97	G+Q+EX	-144.81	G+Q+EX	118.30	G+Q+EX
associée aux escaliers	Etage courant	106.07	G+Q+EX	-148.51	G+Q+EX	122.48	G+Q+EX
	Terrasse	58.53	G+Q+EX	-104.27	G+Q+EX	65.95	G+Q+EX

Tableau IV-2: Les sollicitations maximales dans les poutres secondaires

❖ Le calcul des poutres se fait à la flexion simple selon l'organigramme (Annexe n°04), les résultats de calcul sont résumés dans le tableau ci-dessous :

Poutre	Niveau	Localisation	Moment	A ^{cal}	A^{min}	Choix des armatures	Aadoptée
principale			(KN.m)	(cm²)	(cm²)		(cm²)
PP	Service	Appui	-284.67	17.2	7.5	6HA20	18.85
associée		Travée	224.26	13.1	7.5	4HA16+4HA14	14.2
aux voiles	Etage	Appui	-316.08	19.5	7.5	3HA25+3HA16	20.76
	courant	Travée	223.20	13.7	7.5	4HA16+4HA14	14.2
	Terrasse	Appui	-158.05	8.9	7.5	3HA16+2HA14	9.11
		Travée	120.98	6.7	7.5	3HA14+2HA14	7.7
PP non	Service	Appui	-177.97	10.1	7.5	3HA16+2HA16	10.52
associée		Travée	150.47	8.5	7.5	3HA16+2HA14	9.11
aux voiles	Etage	Appui	-206.79	12	7.5	6HA16	12.06
	courant	Travée	173.77	9.9	7.5	3HA16+2HA16	10.05
	Terrasse	Appui	-158.05	8.9	7.5	3HA16+2HA14	9.11
		Travée	120.98	6.7	7.5	3HA14+2HA14	7.7

Tableau IV.3.Le ferraillage des poutres principales

Poutre	Niveau	Localisation	M ^{travée}	A ^{cal}	A^{min}	Choix des armatures	Aadoptée
secondaire			(KN.m)	(cm²)	(cm²)		(cm²)
PS associée	Service	Appui	-144.81	10.8	6	4HA16+2HA14	11.12
et associée		Travée	130.97	7.5	6	3HA14+2HA14	7.7
aux	Etage	Appui	-148.51	11.1	6	4HA16+2HA14	11.12
escaliers	courant	Travée	106.07	7.6	6	3HA14+2HA14	7.7
	Terrasse	Appui	-104.27	7.5	6	3HA14+2HA14	7.7
		Travée	58.53	4.1	6	3HA16	6.03

<u>Tableau IV-4</u>: Le ferraillage des poutres secondaires

IV-2-3 Vérification du RPA:

> Les longueurs de recouvrement :

La longueur minimale des recouvrements est de $L_r = 40\emptyset$ (Art 7.5.2.1)

 $\emptyset = 14 \text{ mm}: \ L_r = 40\emptyset = 40 \times 1.4 = 56 \text{ cm};$ On opte pour $L_r\!\!=\!\!60\text{cm}$

 $\emptyset = 16 \text{mm}: L_r = 40 \emptyset = 40 \times 1.6 = 64 \text{cm}$; On opte pour $L_r = 65 \text{cm}$

$$\emptyset = 20 \text{ mm}: L_r = 40\emptyset = 40 \times 2 = 80 \text{ cm}; \text{ on opte pour L}_r = 80 \text{cm}$$

$$\emptyset = 25 \text{ mm}: L_r = 40\emptyset = 40 \times 2 = 80 \text{ cm}; \text{ on opte pour } L_r = 100 \text{ cm}$$

> Les armatures transversales :

• Diamètre des armatures transversales ϕ_t :

$$\phi_t \leq \min\left(\frac{h}{35}; \frac{b}{10}; \phi_t^{\min}\right)$$
 (BAEL91 A.7.2,2)

Poutre principale:
$$\phi_t \le \min\left(\frac{500}{35}; \frac{300}{10}; 14\right) \Rightarrow \phi_t \le \min\left(14.28; 30; 14\right) \Rightarrow \phi_t = 8mm$$

Poutre secondaire :
$$\phi_t \le \min\left(\frac{400}{35}; \frac{300}{10}; 14\right) \Rightarrow \phi_t \le \min\left(11.43; 30; 14\right) \Rightarrow \phi_t = 8mm$$

Soit
$$\emptyset_t$$
=8mm $A_t = 4HA8 = 2,01cm^2(1cadre + 1\acute{e}trier)$

❖ Calcul des espacements : (RPA99v2003 (Art. 7.5.2.2)

Zone nodale :
$$\begin{cases} poutre\ principale : S_t \leq \min\left(\frac{50}{4}; 12 \times 1.4\right) \Rightarrow S_t \leq \min\left(12.5; 16.8\right) \Rightarrow S_t = 10cm \\ poutre\ secondaire : S_t \leq \min\left(\frac{40}{4}; 12 \times 1.4\right) \Rightarrow S_t \leq \min\left(10; 16.8\right) \Rightarrow S_t = 10cm \end{cases}$$

Zone courante :
$$\begin{cases} poutre\ principale : S_t \leq \frac{50}{2} \Rightarrow S_t \leq 25 \Rightarrow S_t = 15cm \\ poutre\ secondaire : S_t \leq \frac{40}{2} \Rightarrow S_t \leq 20 \Rightarrow S_t = 15cm \end{cases}$$

❖ Vérification de la section transversale minimale :

$$A_t^{min}$$
=0,3% (St×b)=1.35cm²< $A^{adopt\acute{e}}$ =2.01cm²

IV-2-4 Vérifications à L'ELU:

Condition de non fragilité

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{fe} \le A_{cal} \Rightarrow \begin{cases} poutre\ principale : A_{\min} = 1.72cm^2 \\ poutre\ secondaire : A_{\min} = 1.35cm^2 \end{cases} \Rightarrow \textbf{C'est v\'erifi\'ee}$$

Vérification de l'effort tranchant :

Il faut vérifier que : $\tau_u \leq \bar{\tau}$

Fissuration peu nuisible
$$\Rightarrow \tau_u = \frac{V_u}{b \times d} \le \frac{1}{\tau_u} = \min \left(0.2 \frac{f_{c28}}{\gamma_b}; 5MPa \right)$$

Les vérifications se font uniquement pour les poutres les plus défavorables, les résultats de calcul sont récapitulés dans le tableau ci-dessous

Poutre	V ^{max} (KN)	τ _{bu} (Mpa)	$ar{ au}_{ m bu}({ m Mpa})$	Observation
Principale	Principale 258.89		4.34	vérifiée
Secondaire	400.5	3.55	4.34	vérifiée

Tableau IV- 5: Vérification des contraintes tangentielles

IV-2-5 Vérifications à L'ELS:

a) Etat limite de compression de béton :

On doit vérifier que :
$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \le \overline{\sigma_{bc}} = 0.6 f_{c28}$$

b) Etat limite de déformation :

		M				Contr	aintes	
Poutre	Position	M _{ser} (KN.m)	A_{st} (cm^2)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma_{bc}}$ (MPa)	Observation
Poutre	Appui	-88.42	20.76	22.76	290468.81	6.56	15	Vérifiée
principale	Travée	37.95	14.20	19.82	241056.23	3.12	15	Vérifiée
Poutre secondaire	Appui	-77.23	12.44	15.60	117963.11	10.21	15	Vérifiée
	Travée	40.77	9.11	13.57	911128.95	6.07	15	Vérifiée

Tableau IV-1: Vérification de l'état limite de compression du béton

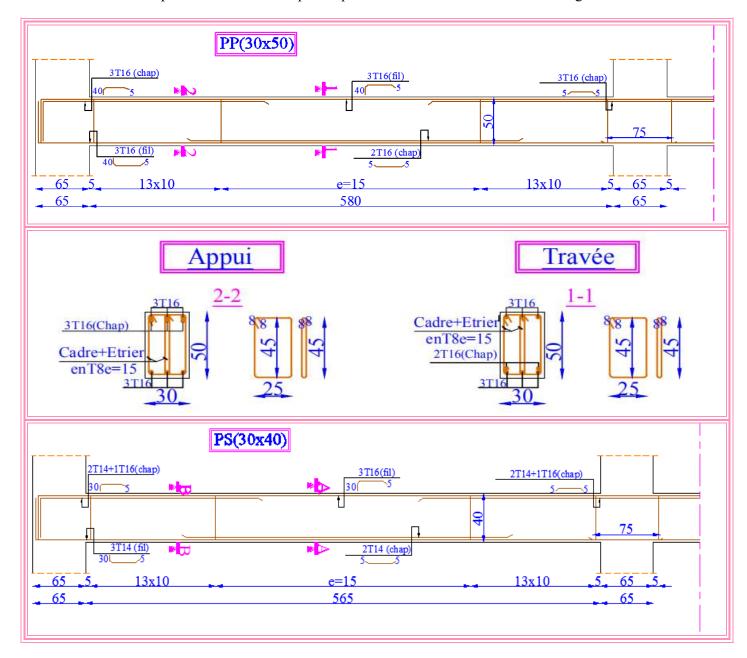
La vérification de la flèche est nécessaire si l'une des quatre conditions suivantes n'est pas vérifiée :

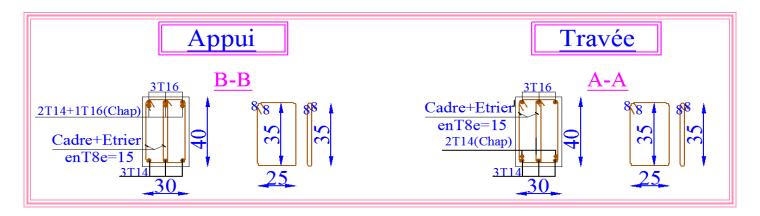
$$\begin{cases}
\frac{h}{L} \ge \frac{1}{16} \\
\frac{h}{L} \ge \frac{1}{10} \cdot \frac{M_{t}}{M_{0}}
\end{cases}
\begin{cases}
\frac{A}{b_{0}.d} \le \frac{4.2}{fe} \\
L \le 8m
\end{cases}$$

Exemple de calcul :(Poutre principale)

$$\begin{cases} \frac{0.50}{6.45} = 0.077 \ge \frac{1}{16} = 0.06 \\ \frac{0.50}{6.45} = 0.077 \ge \frac{1}{10} \cdot \frac{0.75M_0}{M_0} = 0.075 \end{cases} \begin{cases} \frac{14.20}{30 \times 47.5} = 9.96 \times 10^{-3} \le \frac{4.2}{fe} = 10.5 \times 10^{-3} \\ L = 6.45m \le 8m \end{cases}$$

Le tableau ci-dessous résume les résultats des vérifications des trois conditions pour les deux types de poutres :


poutre	h (cm)	b (cm)	L (m)	A_{st} (cm^2)	$\frac{h}{L} \ge \max\left(\frac{1}{16}; \frac{M_t}{10 \times M_0}\right)$	$\frac{A}{b_0.d} \le \frac{4.2}{fe}$	Observation
Principale	50	30	6.45	14.20	0.077 > 0.075	0.0096<0.0105	Vérifiée
secondaire	40	30	6.30	7.70	0.063 > 0.075	0.0641<0.0105	Vérifiée


Tableau IV-7: Vérification des conditions de la flèche des poutres

Les trois conditions sont vérifiées, donc la vérification de la flèche n'est pas nécessaire

IV-2-6 Schémas de ferraillage des poutres

Les schémas de ferraillage des poutres sont insérés dans (l'annexe N°10), dans les figures cidessous, on représente comme exemple les poutres non associées aux voiles d'étage courant :

<u>Figure IV- 1</u>:Schéma de dispositions constructives avec la coupe en travée et appui de la poutre principale et secondaire de l'étage courant non associée aux voiles

IV-3 Etude des poteaux :

Les poteaux sont des organes de la structure en verticaux béton armé, sont destinés à transmettre les charges à la base de la structure ils sont soumis à des efforts normaux et des moments fléchissant, leurs ferraillage se fait à la flexion simple selon les sollicitations les plus défavorables suivantes :

$$M_{\max} \to N_{correspondant}$$
 $N_{\max} \to M_{correspondant}$ $N_{\min} \to M_{correspondant}$

Les combinaisons utilisées pour déterminer ces sollicitations sont :

$$\begin{cases} 1.35G + 1.5Q \\ G + Q \end{cases}$$
$$G + Q \pm E$$
$$0.8G \pm E$$

IV-3-1 Les recommandations du RPA 99/2003 RPA:

- a)Les armatures longitudinales (art 7.4.2.1)
- ✓ Les armatures longitudinales doivent être de haute adhérence, droites et sans crochets.
 - ✓ $A_{\min} = 0.8\%$ de la section de béton (en zone IIa).
 - ✓ $A_{\text{max}} = 4\%$ de la section de béton (en zone courante).
 - ✓ $A_{\text{max}} = 6\%$ de la section de béton (en zone recouvrement).
- \checkmark diamètre minimal utilisée pour les barres longitudinales est : $\phi_{\min} = 12mm$.
- ✓ La longueur minimale de recouvrement L_{\min} est de 40ϕ en zone IIa.
- ✓ La distance ou espacement(St) entre deux barres verticales dans une face de poteau ne doit pas dépasser 25cm (zone IIa).
- ✓ Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (critique).

✓ La zone nodale est constituée par le nœud poutre-poteau et les extrémités des barres qui y concourent, les longueurs à prendre pour chaque barre sont données comme suit :

$$h' = \max\left(\frac{h}{6}; b_1; h_1; 60cm\right)$$

$$h' = 2 \times h$$

 h_{e} : hauteur de l'étage.

 b_1 ; h_1 : dimensions de la section transversale de poteau.

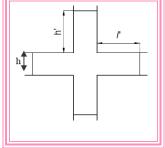


Figure IV-2 : zone nodale

Les valeurs numériques relatives conformément aux recommandations du RPA99 V2003 sont apportées dans le tableau suivant :

	Section de	25	$A_{\max}(cm^2)$				
Niveaux	Poteau (cm ²)	$A_{\min}(cm^2)$	Zone courante	Zone de recouvrement			
RDC	75×75	45	225	337.5			
Etage 1 et 2	70×70	39.2	196	294			
Etage 3 et 4	65×65	33.8	169	253.5			
Etage 5 et 6	60×60	28.8	144	216			
Etage 7	55×55	24.2	121	181.5			
Etage 8	50×50	20	100	150			
Etage 9	45×45	16,20	81	121,5			
Terrasse	40×40	12,80	64	96			

Tableau IV-8: Armatures longitudinales minimales et maximales dans les poteaux

a. Les armatures transversales : RPA99/2003 (Article 7.4.2.2)

Les armatures transversales dans les poteaux servent à reprendre, les efforts tranchants et évitent le flambement des barres verticales elles sont Calculées à l'aide de la formule suivante :

V: Effort tranchant de calcul.

h₁: Hauteur total de la section brute.

$$\frac{A_t}{t} = \frac{\rho_a \times V}{h_1 \times f_a}$$

f_e: Contrainte limite élastique de l'acier d'armatures transversales.

t: Espacement entre les armatures transversales telle que :

Dans la zone nodale : $t \le \min(10\phi_i; 15cm)$

Dans la zone courante : $t \le 15\phi_t$

 ϕ_l : Diamètre minimal des armatures longitudinales du poteau.

 ρ_a : Est un coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant, il est pris égale a :

2.50
$$si$$
 $\lambda_g \ge 5$
3.75 si $\lambda_g < 5$ $\lambda_g : \'elancement g\'eom\'etrique $\lambda_g = \left(\frac{l_f}{a}ou\frac{l_f}{b}\right)$$

Avec a et b : sont les dimensions de section droite du poteau dans la direction de déformation considérée.

l_f: Longueur de flambement.

La quantité d'armatures transversales minimale $A_t/t \times b$ en % est donnée comme suite :

$$A_t^{\min} = 0.3\% (t \times b_1) \text{ si } \lambda_g \ge 5$$

$$A_t^{\min} = 0.8\% (t \times b_1) \text{ si } \lambda_g \le 3$$

Interpolation entre les valeurs limites précédentes si $3 \le \lambda_{g} \le 5$

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de 10ϕ minimum

IV-3-2 Ferraillage des poteaux :

Pour le calcul de ferraillage on va exposer un exemple de calcules autres seront résumés dans des tableaux.

Exemple de calcul:

Nous exposerons un exemple de calcul de poteau le plus sollicité.

poteau RDC: b=75cm; h= 75 cm; d'=2,5cm; d=72,5cm; fe= 400 MPa.

a)-Calcul sous N_{max}et M_{cor}:

$$N_{\text{max}} = 3717,54KN \rightarrow M_{cores} = 156,21KN.m$$
 (Sous la combinaison $G + Q + Ey$)

$$e_G = \frac{M_u}{N_u} = 4.2 \text{cm} < \frac{h}{2} = 37.5 \text{cm} \implies \text{le centre de pression se trouve à l'intérieur de la section de}$$

béton, on doit vérifier la condition suivante : $(a) \succ (b)$(I)

$$N_U(d-d')-M_{UA} \succ (0.337h-0.81d')b \times h \times f_{bu}....(I)$$

Avec:
$$M_{UA} = M_U + N_U (d - \frac{h}{2})$$

$$\begin{cases} \Rightarrow 3717, 54 \times 10^{-3} (0,725 - 0,025) - 1457, 35 \times 10^{-3} = 1,144 MN.m \\ \Rightarrow (0,337 \times 0,75 - 0,81 \times 0,025)0, 75 \times 0,75 \times 18,48 MN.m \end{cases}$$

Donc $1{,}144 \prec 2{,}416 \Longrightarrow$ la section est partiellement comprimée, le calcul se fera par assimilation à la flexion simple.

$$\mu_{bu} = \frac{M_{uA}}{b \times d^2 \times f_{bu}} = \frac{1457,35 \times 10^{-3}}{0,75 \times 0,725^2 \times 18,48} = 0,20 < \mu_{bu} \Longrightarrow A' = 0$$

$$\mu_{bu} = 0,20 \succ \mu_{l} \Rightarrow pivotB$$
 ; $f_{st} = \frac{fe}{\gamma_{s}} = \frac{400}{1} = 400Mpa$; $\alpha = 1,25\left(1 - \sqrt{1 - 2\mu_{bu}}\right) = 0,281$

$$A_1 = \frac{M_{uA}}{Z \times f_{st}} = 56,66cm^2$$
 Tel que : $Z = d(1-0,4\alpha) = 0,643m$

On revient à la flexion composé :
$$A = A_1 - \frac{N_U}{f_{St}} = -36,27cm^2$$
 donc $A = 0cm^2$

***** Ferraillages des autres poteaux :

Le tableau ci-dessous, résume le calcul des armatures avec les sollicitations maximales dans les poteaux pour chaque niveau :

Section	Sollicitation	N(KN)	M (KN,m)	V(KN)	Combinai	Type de section	A _{cal} (cm2)	$A_{min}(cm^2)$	Choix des armatures	
7575	$N_{\rm max} \rightarrow M_{cor}$	3717.54	156.2141		ELUA	SPC	0			
75×75 (RDC)	$M_{\rm max} \rightarrow N_{cor}$	234.19	1721.64	142.88	ELUA	SPC	0	45	12HA20+4HA16 =45.72 cm ²	
()	$N_{\min} \to M_{cor}$	-976.21	31.27		ELUA	SET	13.31		<u>-</u>	
7070	$N_{\rm max} \to M_{cor}$	3163.27	12.35		ELU	SPC	0			
70×70 (Etage1)	$M_{\rm max} \rightarrow N_{cor}$	245.52	2833.48	138.67	ELUA	SPC	0	39.2	12HA20+4HA16 =45.72 cm ²	
(=8)	$N_{\min} \rightarrow M_{cor}$	-240.46	25.99		ELUA	SET	4			
7070	$N_{\rm max} \to M_{cor}$	2774.33	72.74		ELUA	SPC	0			
70×70 (Etage2)	$M_{\rm max} \rightarrow N_{cor}$	237.19	2312.66	161.36	ELUA	SPC	1.22	39.2	12HA20+4HA16 =45.72 cm ²	
(=:::8:=)	$N_{\min} \to M_{cor}$	123.34	75.11		ELUA	SPC	0			
65×65	$N_{\rm max} \rightarrow M_{cor}$	2375.93	25.11		ELU	SPC	0			
	$M_{\rm max} \rightarrow N_{cor}$	227.05	2002.45	144.50	ELUA	SPC	0.669	33.8	4HA20+12HA16 =36.69 cm ²	
(<i>Etage</i> 3+4)	$N_{\min} \rightarrow M_{cor}$	152.95	65.11		ELUA	SPC	0		=36.69 cm ²	

6060	$N_{\rm max} \rightarrow M_{cor}$	1660.50	23.08	120.91	ELU	SPC	0			
60×60	$M_{\rm max} \to N_{cor}$	175.47	961.87	120.91	ELUA	SPC	0	28.8	16HA16 =32.17cm ²	
(<i>Etage</i> 5+6)	$N_{\min} \rightarrow M_{cor}$	69.56	21.00		ELUA	SPC	0.015			
55×55	$N_{\rm max} \rightarrow M_{cor}$	969.83	12.57		ELU	SPC	0			
(Etage7)	$M_{\rm max} \to N_{cor}$	136.41	677.38	96.31	ELUA	SPC	0	24.2	$16HA14$ = 24.63 cm^2	
(Etage7)	$N_{\min} \rightarrow M_{cor}$	-25.75	16.93		ELUA	SET	1.168			
50×50	$N_{\rm max} \rightarrow M_{cor}$	644.24	30.00		ELU	SPC	0			
(Etage8)	$M_{\rm max} \to N_{cor}$	114.72	429.99	79.17	ELUA	SPC	1.01	20	8HA14+8HA12 =21.37 cm ²	
\ 0 /	$N_{\min} \rightarrow M_{cor}$	-68.67	7.97		ELUA	SET	1.30			
45 45	$N_{\rm max} \rightarrow M_{cor}$	386.53	29.07		ELU	SPC	0			
45×45	$M_{\rm max} \to N_{cor}$	104.96	216.65	77.47	ELUA	SPC	3.8	16.2	16HA12 =18.10 cm ²	
(Etage09)	$N_{\min} \rightarrow M_{cor}$	-38.34	29.65		ELUA	SET	2.3			
40×40	$N_{\rm max} \rightarrow M_{\it cor}$	161.91	6.84		ELU	SPC	0			
	$M_{\rm max} \rightarrow N_{cor}$	30.33	41.99	18.37	ELUA	SPC	1.509	12.8	12HA12 13.57 cm ²	
(Terr.acc)	$N_{\min} \rightarrow M_{cor}$	6.95	9.45		ELUA	SPC	0.54			

Tableau IV-9: Calcul des armatures longitudinales

Les armatures transversales: RPA99 (Art.7.4.2.2)

Exemple de calcul: poteau RDC (75×75) cm²

$$l_f = 0.7l_0 = 0.7 \times 5.44 = 3.80m$$

$$\lambda_g = \frac{3.80}{0.75} = 5.07 \Rightarrow \lambda_g \gg 5 \Rightarrow \rho = 2.5$$

L'espacement est pris égal à :

$$t_{z.nodale} \le \min(10\phi_l^{\min}; 15cm) = \min(16cm; 15cm) \Longrightarrow t_{z.nodale} = 10cm$$

$$t_{z.cour} \le 15\phi_l^{\min} = 15 \times 1.6 = 24cm \Longrightarrow t_{z.cour} = 10cm$$

Soit:
$$A_t = \frac{\rho \times V}{h_1 \times f_e} \times t_{\text{max}} = \frac{2.5 \times 142.88 \times 10^{-3}}{0.75 \times 400} \times 0.10 = 1.79 cm^2$$

La quantité d'armatures transversales minimale :

$$\begin{cases} \lambda_g = 5.07 \\ \lambda_g > 5 \end{cases} \Rightarrow A_t^{\min} = 0.3\%(b \times t) \Rightarrow A_t^{\min} = 2.25cm^2$$

On adopte : $6\phi 8 = 3.02cm^2$

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents poteaux des différents niveaux :

Section	75×75	70×70	70×70	65×65	60×60	55×55	50×50	45×45	40×40
$\phi_{l \max}(cm)$	2	2	2	2	1.6	1.4	1.4	1.2	1.2
$\phi_{l \min}(cm)$	1.6	1.6	1.6	1.6	1.6	1.4	1.2	1.2	1.2
$l_0(cm)$	544	306	306	306	306	306	306	306	340
L _f (cm)	3.808	2.142	3.213	2.142	2.142	2.142	2.142	2.142	2.38
$\lambda_{_g}$	5.07	3.06	4.59	3.29	3.57	3.89	4.28	4.76	5.35
$ ho_a$	2.5	3.75	3.75	3.75	3.75	3.75	3.75	3.75	2.5
V(KN)	142.88	138.67	161.35	144.50	120.90	96.30	79.17	77.47	18.37
Lr(cm)	80	80	80	80	65	60	60	60	60
Lc(cm)	10	10	10	10	10	10	10	8	8
$t_{z.nodal}(cm)$	10	10	10	10	10	10	10	10	10
$t_{z.cour}(cm)$	10	10	10	10	10	10	10	10	10
$A_t^{cal}(cm^2)$	1.79	1.85	2.16	2.08	1.88	1.64	1.48	1.61	0.28
$A_t^{\min}(cm^2)$	2.25	5.49	2.8	4.71	3.94	3.17	3.39	1.62	1.8
$A_t^{adop}(cm^2)$	6T10	8T10	6T10	6T10	6T10	6T10	6T10	6T8	6T8
	=4.71	=6.28	=4.71	=4.71	=4.71	=4.71	=4.71	=3.02	=3.02

Tableau IV-10: sollicitations et ferraillage des poteaux

IV-3-3 Vérifications nécessaire:

a) Vérification au flambement:

La vérification vis-à-vis le flambement est nécessaire pour les éléments soumis à la flexion composée, la vérification se fait pour le poteau le plus sollicité et élancé.

On doit vérifier que :
$$N_{\text{max}} \le N_u = \alpha \times \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + A_s \times \frac{f_e}{\gamma_s} \right)$$

B_r: Section réduite du béton

 α : Coefficient réducteur qui est fonction de l'élancement λ .

A_s: Section d'acier comprimée prise en compte dans le calcul

$$\alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} \quad Si \ \lambda \le 50 \qquad \text{et } \alpha = 0.6 \times \left(\frac{50}{\lambda}\right) \qquad Si \ 50 \le \lambda \le 70$$

L'élancement mécanique est donné par :
$$\lambda = \frac{l_f}{i} \Rightarrow i = \sqrt{\frac{I}{B}}$$
 BAEL91

l_f: Longueur de flambement.

 $B_r = (a-2)(b-2)$ Pour un poteau rectangulaire

Les résultats des vérifications des poteaux au flambement, sont récapitulés dans le tableau cidessous:

Section	l ₀ (cm)	l _f (cm)	λ	A	A_s (cm ²)	B_r (cm ²)	N _u (KN)	N _{max} (KN)	1.1N _{max} (KN)	Observation
75×75	544	380.8	17.57	0.81	45.74	5329	11893.57	3717.54	4089.29	Vérifiée
70×70	306	214.2	10.58	0.83	41.21	4624	8397.29	3163.27	3479.59	Vérifiée
70×70	459	321.3	15.88	0.80	41.21	4624	10437.94	2774.33	3051.76	Vérifiée
65×65	306	214.2	11.40	0.83	34.43	4284	9209.51	2375.93	2613.52	Vérifiée
60×60	306	214.2	12.35	0.83	30.29	3364	6253.67	1660.50	1826.55	Vérifiée
55×55	306	214.2	13.47	0.83	24.63	2809	5004.36	969.83	1066.81	Vérifiée
50×50	306	214.2	14.82	0.82	21.37	2304	4113.18	644.24	708.66	Vérifiée
45×45	306	214.2	16.47	0.81	17.65	1849	3299.66	386.53	425.18	Vérifiée
40×40	340	238	20.59	0.79	13.57	1444	2501.19	161.91	178.10	Vérifiée

Tableau IV-11: Vérification au flambement des poteaux

b. Vérification des contraintes :

La fissuration est peu nuisible, donc on vérifie uniquement le poteau le plus sollicité à la compression du béton à L'ELS dans chaque niveau, les formules de calcule sont insérés dans (**l'annexe n°07**)

								σ_{bc} (MPa)		
Section	d	A _s	V	v'	$I_{yy'}(m^4)$	N _{ser}	M_{ser}	$\sigma_{\!\scriptscriptstyle bc1}$	$\sigma_{_{bc2}}$	Type de	σ
Section	(cm)	(cm ²)	(cm)	(cm)	Tyy (III)	(KN)	(KN.m)	(MPa)	(MPa)	section	(MPa)
75×75	72.5	14.58	37.5	37.5	0.0332	2650.40	35.34	4.68	3.88	SEC	15
70×70	67.5	14.58	35	35	0.0259	2343.16	56.11	5.04	3.63	SEC	15
70×70	67.5	14.58	35	35	0.0259	2050.91	36.41	4.24	3.26	SEC	15
65×65	62.5	12.21	32.5	32.5	0.0199	1759.95	40.08	4.32	3.02	SEC	15
65×65	62.5	12.21	32.5	32.5	0.0199	1494.01	37.27	3.72	2.51	SEC	15

60×60	57.5	10.05	30	30	0.0151	1230	34.61	3.64	2.26	SEC	15
60×60	57.5	10.05	30	30	0.0151	972.18	42.59	3.18	1.48	SEC	15
55×55	52.5	7.70	27.5	27.5	0.0111	718.39	39.61	2.97	1.02	SEC	15
50×50	47.5	6.88	25	25	0.0081	477.21	39.23	2.77	0.34	SEC	15
45×45	42.5	7.7	22.5	22.5	/	286.32	54.11	6.	89	SPC	15
40×40	37.5	4.52	20	20	/	119.93	12.14	2.	12	SPC	15

Tableau IV-12: Vérification des contraintes dans le béton.

b-Vérification à l'effort tranchant :

D'après le RPA99/2003 (Art 7.4.3.2), la contrainte de cisaillement dans le béton doit être inférieure ou égale à la contrainte de cisaillement ultime : $\tau_{bu} \leq \overline{\tau_{bu}}$ Avec : $\tau_{bc} = \frac{V_{\max}}{b \times d} \leq \overline{\tau} = \rho_d \times f_{c28}$ tel que :

Niveau	Section	l _f (m)	λ_{g}	$ ho_{\scriptscriptstyle d}$	d (m)	V _{max} (KN)	$ au_{bu}$ (MPa)	$\frac{1}{\tau}$ (MPa)
RDC	75×75	3.808	5.07	0.075	72.5	142.88	0.263	1.875
Etage1	70×70	2.142	3.06	0.04	67.5	138.67	0.293	1
Etage2	70×70	3.213	4.59	0.04	67.5	161.35	0.341	1
Etage3+4	65×65	2.142	3.29	0.04	62.5	144.50	0.356	1
Etage5+6	60×60	2.142	3.57	0.04	57.5	120.90	0.350	1
Etage7	55×55	2.142	3.89	0.04	52.5	96.30	0.334	1
Etage8	50×50	2.142	4.28	0.04	47.5	79.17	0.333	1
Etage9	45×45	2.142	4.76	0.04	42.5	77.47	0.405	1
Etage10	40×40	2.38	5.95	0.075	37.5	18.37	0.122	1.875

Tableau IV-13: Vérification des contraintes de cisaillement

$$p_d = \begin{cases} 0.075Si: \lambda_g \ge 5\\ 0.04Si: \lambda_g < 5 \end{cases}$$

Détermination de la zone nodale :

La zone nodale est définie par h_e: Hauteur d'étage et l' et h' tel que :

$$l'=2h$$

$$h' = \max\left(\frac{h_e}{6}; b_1; h_1; 60cm\right)$$

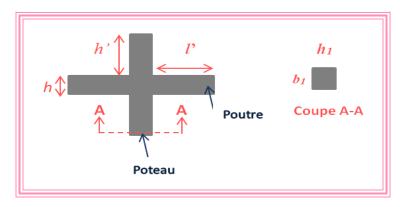


Figure IV-3: La zone nodale

Niveaux		RDC	1	2	3+4	5+6	7	8	9	10
Section	$(b_1 \times h_1)$	75×75	70×70	70×70	65×65	60×60	55×55	50×50	45×45	40×40
l'(cm)	PP	100	100	100	100	100	100	100	100	100
	PS	80	80	80	80	80	80	80	80	80
h'(cm)	90.66	70	76.5	65	60	55	51	51	56.66

Tableau IV-14: Dimensions de la zone nodale

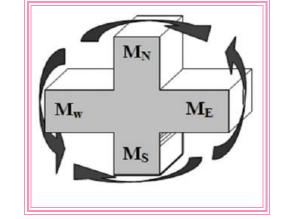
Vérification des zones nodales :

La vérification de la zone nodale fait en sorte que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux, cette vérification est facultative pour les deux derniers niveaux des bâtiments supérieurs à R+2, on doit vérifier la condition suivante :

$$|M_n| + |M_s| \ge 1.25 \times (|M_w| + |M_e|) RPA 99/2003 (Article 7.6.2)$$

 M_s : Moment résistant dans le poteau inférieur.

 M_n : Moment résistant dans le poteau supérieur.


 $M_{\scriptscriptstyle W}$: Moment résistant gauche de la poutre.

 \boldsymbol{M}_{e} : Moment résistant droite de la poutre.

Détermination du moment résistant:

Le moment résistant M_R d'une section de béton dépend :

- Des dimensions de la section du béton.
- De la quantité d'acier dans la section du béton(As).
- De la contrainte limite élastique des aciers σ_s

<u>Figure IV-4:</u>La répartition des moments sur la zone nodale

Tel que : $M_R = Z \times A_s \times \sigma_s$ avec : $Z = 0.9 \times h$ et σ	$ \sigma_{S} = \frac{f_{e}}{\gamma_{s}} $
--	---

Niveau	Section(cm ²)	Z (m)	$A_s (cm^2)$	M _R (KN.m)
RDC	75×75	67.5	13.58	393.66
1	70×70	63	13.58	367.42

2	70×70	63	13.58	367.42
3+4	65×65	58.5	12.31	228.05
5+6	60×60	54	10.05	217.08
7	55×55	49.5	7.7	152.46
8	50×50	45	6.88	123.84
9	45×45	40.5	5.65	91.53
10	40×40	36	4.52	65.09

Tableau IV-15: Moments résistant dans les poteaux

	Poutre principale 30×50									
Niveau	Local	h(cm)	Z (cm)	As (cm²)	$\sigma_s({ m Mpa})$	$M_R(KN.m)$				
Service	Travée	50	45	6.03	400	108.54				
	Appui	50	45	10.52	400	189.36				
Etage	Travée	50	45	6.03	400	108.54				
courant	Appui	50	45	12.06	400	217.08				
Terrasse	Travée	50	45	4.62	400	83.16				
	Appui	50	45	9.11	400	163.98				

<u>Tableau IV-16:</u> Moments résistants dans les poutres principales

_	Poutre secondaire 30×40									
Niveau	Local	h(cm)	Z (cm)	As (cm²)	$\sigma_s({ m Mpa})$	$M_R(KN.m)$				
Service	Travée	40	36	4.62	400	66.53				
	Appui	40	36	11.12	400	160.13				
Etage	Travée	40	36	4.62	400	66.53				
courant	Appui	40	36	11.12	400	160.13				
Terrasse	Travée	40	36	4.62	400	66.53				
	Appui	40	36	7.7	400	110.88				

Tableau IV-17: Moments résistants dans les poutres secondaires

Vérification des zones nodales :

			Po	outre principal	le 30×50		
Niveau	M_n	$M_{\rm s}$	M_n+M_s	$M_{\rm e}$	$M_{ m w}$	1.25 (M _e +M _w)	observation
RDC	702.09	363.15	1065.24	108.54	189.36	372.37	Vérifiée
1	734.83	367.42	1102.25	108.54	189.36	372.37	Vérifiée
2	655.47	367.42	1022.88	108.54	189.36	372.37	Vérifiée
3	576.11	288.05	864.16	108.54	217.08	407.025	Vérifiée
4	505.13	288.05	793.18	108.54	217.08	407.025	Vérifiée
5	434.16	217.08	651.24	108.54	217.08	407.025	Vérifiée
6	369.54	217.08	586.62	108.54	217.08	407.025	Vérifiée
7	276.30	152.46	528.76	108.54	217.08	407.025	Vérifiée
8	215.37	123.84	339.21	108.54	217.08	407.025	Non vérifiée
9	156.62	91.53	248.15	83.16	163.98	308.92	Non vérifiée
10(T .inaces)	0	65.09	65.09	83.16	163.98	308.92	Non vérifiée

Tableau IV-18: Vérification des zones nodales.

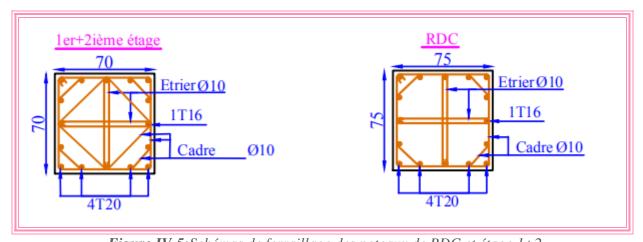

			Po	outre secondain	re 30×40		
Niveau	M_n	M_s	M_n+M_s	M_{e}	$M_{ m w}$	$1.25 (M_e + M_w)$	observation
RDC	702.09	363.15	1065.24	66.53	160.13	285.31	Vérifiée
1	734.83	367.42	1102.25	66.53	160.13	285.31	Vérifiée
2	655.47	367.42	1022.88	66.53	160.13	285.31	Vérifiée
3	576.11	288.05	864.16	66.53	160.13	285.31	Vérifiée
4	505.13	288.05	793.18	66.53	160.13	285.31	Vérifiée
5	434.16	217.08	651.24	66.53	160.13	285.31	Vérifiée
6	369.54	217.08	586.62	66.53	160.13	285.31	Vérifiée
7	276.30	152.46	528.76	66.53	160.13	285.31	Vérifiée
8	215.37	123.84	339.21	66.53	160.13	285.31	Vérifiée
9	156.62	91.53	248.15	66.53	110.88	221.75	Vérifiée
10	0	65.09	65.09	66.53	110.88	221.75	Non vérifiée

Tableau IV-19: Vérification des zones nodales

Remarque: On remarque que la condition du RPA n'est pas vérifiée pour les trois derniers niveaux, selon le RPA on peut tolérer la non vérification de cette condition, le poteau de l'étage 10 supporte seulement la dalle de la cage d'escalier c'est pour cette raison qu'on ne la pas considérer comme un étage.

IV-3-4 Schémas de ferraillage des poteaux :

Les plan de ferraillage des poteaux sont insérés dans l'annexe $n^{\circ}10$, on expose les schémas de ferraillage des poteaux de RDC er étage 1+2 comme un exemple :

<u>Figure IV-5</u>:Schémas de ferraillage des poteaux de RDC et étage 1+2

IV-4 Etude des voiles

IV-4-1 Introduction

Les voiles peuvent être définis comme des éléments tridimensionnels dont une dimension (l'épaisseur) faible devant les deux autres, ils présentent une grande rigidité vis-à-vis des forces horizontales agissant dans leurs plans, contrairement dans la direction perpendiculaire de leurs plans, ils offrent très peu de résistance vis-à-vis les forces horizontales, d'après le RPA99V2003(Art~7.7.1) le voile doit avoir des dimensions de $l \ge 4a$.

❖ Le calcul de ferraillage se fera en fonction de la sollicitation la plus défavorable suivante :

$$1.35G + 1.5Q$$

$$G+Q\pm E$$

$$0.8G\pm E$$

Le ferraillage adopté sera le maximum obtenu des sollicitations suivantes :

$$N_{\text{max}} \rightarrow M_{\text{ag}}$$

$$M_{\rm max} \rightarrow N_{cor}$$

$$N_{\min} \rightarrow M_{cor}$$

IV-4-2 Les recommandations du RPA99

- a) Armatures verticales : sont destinées à reprendre les effets de la flexion, disposées à Ces armatures doivent respecter les prescriptions suivantes :
- -Le pourcentage minimal sur toute la zone tendue est de 0.2 %.
- -Les barres verticales des zones extrêmes doivent être ligaturées par des cadres horizontaux dont l'espacement (**St**) est inférieur à l'épaisseur du voile.
- -L'espacement des barres verticales doit être réduit à la moitié sur une longueur **L/10** dans les zones extrêmes.
 - b) Armatures horizontales : sont destinées à reprendre les efforts tranchant, elles sont
- c) Armatures transversales: sont destinées essentiellement à retenir les barres verticales intermédiaires entre le flambement. Elles sont en nombre de 4 épingles par 1 ^{m2} au moins.
- **d) Armatures de couture :** le long des joints de reprise de collage, l'effort tranchant doit être pris les aciers de couture dont la section doit être calculée par la formule suivante :

Cette quantité doit s'ajouter à la section tendue nécessaire pour équilibrer les efforts de traction dus aux moments de renversement.

e) Règles communes

Le pourcentage minimal des armatures verticales et horizontales est :

$$A_{\min} = 0.15\% \times a \times L$$
 Section globale du voile.

$$A_{\min} = 0.10\% \times a \times L$$
 Zone courante

L'espacement des barres (horizontales et verticales) St < min (1.5e; 30 cm)

Diamètre des barres (horizontales et verticales) $\emptyset < a/10$

f) Longueur de recouvrement

 $L_r = 40$ Øen zone qui peut-être tendue.

L_r = 20 Øen zone comprimée sous toutes les combinaisons.

IV-4-2 Exemple de calcul du voile V_{x1} et V_{x2} :

***** Les sollicitations :

Les sollicitations du calcul pour chaque voile sont tirées du logiciel ETABS 2016, on présente dans le tableau ci-dessous les sollicitations pour les voiles V_{x1} et V_{x2} au niveau du RDC.

Chapitre IV

ETUDE DES ELEMENTS STRUCTUREAUX

Niveau	$N_{\rm max} \rightarrow M_{cor}$		$M_{ m max} o N_{cor}$		$N_{\min} \rightarrow M_{cor}$		V(KN)	
	N(kN)	M(KN.m)	N(kN)	M(KN.m)	N(kN)	M(KN.m)		
RDC	1695.81	1363.46	1549.63	1391.99	-187.722	397.86	326.22	

Tableau IV-20: sollicitations dans les voiles Vx_1 et Vx_2

***** Le ferraillage :

Pour le calcul du ferraillage dans cet exemple c'est les sollicitations $N_{\min} \to M_{cor}$ qui ont donné la section d'acier maximale.

On a :N_{min}=-187.72KN
$$\longrightarrow$$
 M_{cor}=397.86KN.m (ELUA)

$$L = 1.9m$$
 ; $e=0.2m$; $d=1.85m$; $d'=0.05m$

• Calcul des contraintes :

$$\sigma^{\max} = \frac{N}{S} + \frac{M}{I} \times V = \frac{-187.72 \times 10^{-3}}{0.2 \times 1.9} + \frac{397.86 \times 10^{-3}}{0.1143} \times 0.95 \Rightarrow \sigma^{\max} = 2.81 Mpa$$

$$\sigma^{\min} = \frac{N}{S} - \frac{M}{I} \times V = \frac{-187.72 \times 10^{-3}}{0.2 \times 1.9} + \frac{397.86 \times 10^{-3}}{0.1143} \times 0.95 \Rightarrow \sigma^{\min} = -3.80 Mpa$$

 $\sigma^{\max} \succ 0$ Et $\sigma^{\min} \prec 0$ la section est partiellement comprimée la méthode de calcul se fait par assimilation à la flexion simple

$$M_{UA} = M + N \times \left(d - \frac{h}{2}\right) = 397.86 - 187.72 \times \left(1.85 - \frac{1.9}{2}\right) = 228.91 \text{KN.m}$$

$$\mu_{bu} = \frac{M_{uA}}{b \times d^2 \times f_{bu}} = \frac{228.91 \times 10^{-3}}{0.2 \times 1.85^2 \times 18.48} = 0.018 < \mu_l = 391 \Rightarrow pivotA \rightarrow (A' = 0); \alpha = 0.0228 ; z = 0.1833$$

$$A_{l} = \frac{M_{UA}}{Z \times f_{st}} = \frac{228.91 \times 10^{-3}}{1.833 \times 400} = 3.12 cm^{2}$$

On revient à la flexion composée :

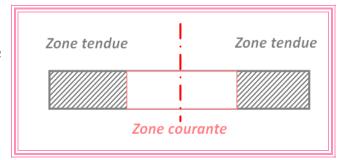
$$A = A_l - \frac{Nu}{f_{st}} = 3.12 \times 10^{-4} - \frac{-187.72 \times 10^{-3}}{400} = 7.81cm^2$$

Soit $A_s = 7.81cm^2$ dans la zone tendue

• Calcul des longueurs tendues et comprimée :

Pour éviter tout changement de signe et contrainte sous les différentes combinaisons, la zone tendue calculée sera prise des deux extrémités, donc le voile sera ferrailler symétriquement

Détermination des langueurs tendues et comprimées :


$$\begin{cases} l_{t} = \frac{\sigma^{\min} \times L}{\sigma^{\min} + \sigma^{\max}} = \frac{3.8 \times 1.9}{3.8 + 2.81} = 1.09m \Rightarrow l_{t} = \frac{L}{2} = 0.95m \\ lc = L - 2l_{t} = 0m \end{cases}$$

> Armatures minimales :

• En zone tendue : $A_{\min}^{ZT} = 0.2\%(e \times l_t)$

• En zone comprimée : $A_{\min}^{ZC} = 0.10\%(e \times l_c)$

• **Dans tout le voile :** $A_{\min} = 0.15\% (e \times l) = 5.7 cm^2$

<u>Figure IV-6</u>: zone courante et zone tendue dans le voile

Espacement des barres verticales :

 $S_t \le \min(1.5 \times e; 30cm) \Rightarrow S_t \le 30cm$, on opte pour $S_t = 20cm$

> Armatures horizontales :

$$A_{H} \geq \frac{\tau_{u} \times b \times S_{t} \times \gamma_{s}}{0.9 \times f_{e}}$$

Avec
$$\tau_u = \frac{1.4 \times V}{e \times d} = \frac{1.4 \times 325.22 \times 10^{-3}}{0.2 \times 1.85} = 1.23 Mpa \prec \tau_u = 0.2 f_{c28} = 5 Mpa$$

Donc pas de risque de rupture par cisaillement

$$A_{H} \ge A_{H}^{\min} = \frac{0.4 \times e \times S_{t}}{f_{e}} = 0.4cm^{2}$$

• Choix des armatures :

Armatures verticales:

En zone tendue : $A_v^{ZT} = 12HA10 = 9.42cm^2$

Armatures horizontales:

$$A_H = 2HA10 = 1.57cm^2 \ (S_t = 20cm)$$

• Schéma de ferraillages des voiles V_{X1} et V_{X2} :

Le schéma de ferraillage est illustré dans l'annexe n°10

Les résultats des ferraillages de tous les voiles sont récapitulés dans les tableaux ci-dessous :

	voiles V _{X1} et V _{X2}						
Niveau	Niveau RDC Etage1 l(m) 1.9 1.9 e(m) 0.2 0.2 N(KN) -187.72 1058.94		Etage 2	Etage 3-4-5	Etage 6-7	Etage 8-9	
l(m)			1.9	1.9	1.9	1.9	
e(m)			0.2	0.2	0.2	0.2	
N(KN)			275.61	121.32	-7.47	-51.37	
M(KN.m)	397.86	460.27	96.92	261.43	205.24	162.23	
V(KN)	326.21	176.19	198.16	138.17	102.40	68.02	
d(m)	1.85	1.85	1.85	1.85	1.85	1.85	
$A_{cal}(cm^2)$	7.81	9.72	0	2.051	2.89	2.86	
τ_u	1.23	1.23	1.23	1.23	1.23	1.23	
$\frac{-}{\tau}_u$	5	5	5	5	5	5	
$A_{min}(RPA)$	5.7	5.7	5.7	5.7	5.7	5.7	
$I(m^4)$	$I(m^4)$ 0.1143 0.1143	0.1143	0.1143	0.1143	0.1143	0.1143	
$\sigma^{\max}(Mpa)$	2.81	6.61	1.53	2.49	1.68	1.21	
$\sigma^{ ext{min}}(Mpa)$	-3.8	-1.038	-0.08	-1.85	-1.73	-1.49	
$l_t(m)$ 0.95 0.25	0.25	0.49	0.81	0.95	0.95		
$l_c(m)$	$\begin{array}{c cccc} A_{\min}^{tendue}(cm^2) & 3.8 & 1 \\ A_{\min}^{courant}(cm^2) & 0 & 2.8 \end{array}$	0.92	0.28	0	0		
$A_{\min}^{tendue}(cm^2)$		1.96	3.24	3.8	3.8		
$A_{\min}^{courant}(cm^2)$		0.18	0.56	0	0		
$A_{ZC}^{Adopt\acute{e}}(cm^2)$		6HA8=3.02	4HA8=2.01	/	/		
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2	
Π_{ij} (C/II)		4HA12+8HA10 =10.8	4HA12+8HA10 =10.8	4HA12+8HA10 =10.8	4HA12+8HA10 =10.8	4HA12+8HA10 =10.8	
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2	
$A_H^{calcul\'ee}(cm^2)$	1.36	0.74	0.83	0.58	0.43	0.29	
$A_H^{\min}(cm^2)$	0.4	0.4	0.4	0.4	0.4	0.4	
$A_H^{adopt\acute{e}e}(cm^2)$	2HA10	2HA10	2HA10	2HA10	2HA10	2HA10	

TableauIV-21: sollicitations et ferraillage des voiles VX1 et VX2

	voiles $ m V_{X3}$ et $ m V_{X4}$							
Niveau	RDC	Etage1	Etage 2	Etage 3-4-5	Etage 6-7	Etage 8-9		
l(m)	2.5	2.5	2.5	2.5	2.5	2.5		

Chapitre	
IV	

ETUDE DES ELEMENTS STRUCTUREAUX

e(m)	0.2	0.2	0.2	0.2	0.2	0.2
N(KN)	3845.26	-106.77	200.91	348.13	143.14	15.96
M(KN.m)	2633.07	186.37	791.34	413.34	323.54	41.83
V(KN)	631.16	461.35	497.66	348.33	244.56	161.33
$ au_u$	1.80	1.32	1.42	0.99	0.50	0.46
$\overline{\tau}_u$	5	5	5	5	5	5
d(m)	2.45	2.45	2.45	2.45	2.45	2.45
$A_{cal}(cm^2)$	0	3.26	5.77	0	1.53	0.22
$A_{min}(RPA)$	7.5	7.5	7.5	7.5	7.5	7.5
$I(m^4)$	0.2604	0.2604	0.2604	0.2604	0.2604	0.2604
$\sigma^{\max}(Mpa)$	32	1.27	7.10	4.35	3.06	0.39
$\sigma^{\min}(Mpa)$	-11.76	-1.83	-6.05	-2.52	-2.31	-0.31
$l_t(m)$	0.67	1.25	1.15	0.92	1.07	1.11
$l_c(m)$	1.16	0	0.2	0.66	0.36	0.28
$A_{\min}^{tendue}(cm^2)$	2.68	5	4.6	3.68	4.28	4.44
$A_{\min}^{courant}(cm^2)$	2.32	0	0.4	1.32	0.72	0.56
$A_{ZC}^{Adopt\acute{e}}(cm^2)$	4HA10=3.14	/	4HA8=2.01	4HA8=2.01	4HA8=2.01	4HA8=2.01
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_V^{adopt\'ee}(cm^2)$	12HA10=9.42	12HA10=9.42	12HA10=9.42	12HA10=9.42	12HA10=9.42	12HA10=9.42
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_H^{calcul\'ee}(cm^2)$	2	1.47	1.57	1.10	0.55	0.24
$A_H^{\min}(cm^2)$	0.4	0.4	0.4	0.4	0.4	0.4
$A_{\scriptscriptstyle H}^{\scriptscriptstyle adopt\acute{e}e}(cm^2)$	2HA12	2HA10	2HA10	2HA10	2HA10	2HA10

<u>TableauIV-22</u>: sollicitations et ferraillage des voiles VX3 et VX4

	voile V _{Y1}					
Niveau	RDC	Etage1	Etage 2	Etage 3-4-5	Etage 6-7	Etage 8-9
l(m)	1.6	1.6	1.6	1.6	1.6	1.6
e(m)	0.2	0.2	0.2	0.2	0.2	0.2
N(KN)	0.4325	167.35	257.73	127.64	8.32	-56.77
M(KN.m)	365.03	45.82	59.05	215.56	181.38	106.19
V(KN)	225.81	69.87	167.25	126.77	104.96	70.42
$ au_u$	1.019	0.315	0.75	0.57	0.47	0.318
$-\frac{\tau}{u}$	5	5	5	5	5	5
d(m)	1.55	1.55	1.55	1.55	1.55	1.55
A _{cal} (cm ²)	6	0	0.28	1.92	2.85	2.44
$A_{min}(RPA)$ (cm ²)	4.8	4.8	4.8	4.8	4.8	4.8
$I(m^4)$	0.0682	0.0682	0.0682	0.0682	0.0682	0.0682
$\sigma^{\max}(Mpa)$	4.27	1.06	6.93	2.92	1.27	1.067
$\sigma^{ ext{min}}(Mpa)$	-4.27	-0.014	-3.29	-2.12	-1.22	-1.42
$l_t(m)$	0.8	0.02	0.51	0.67	0.78	0.68
$l_c(m)$	0	1.55	0.57	0.25	0.032	0.227
$A_{\min}^{tendue}(cm^2)$	3.2	0.08	2.04	2.68	3.12	2.74
$A_{\min}^{courant}(cm^2)$	0	3.1	1.138	0.506	0.064	0.454
$A_{ZC}^{Adopt\acute{e}}(cm^2)$	/	4HA10=3.14	4HA8=2.01	4HA8=2.01	4HA8=2.01	4HA8=2.01
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2

Chapitre IV

ETUDE DES ELEMENTS STRUCTUREAUX

$A_V^{adopt\'ee}(cm^2)$	10HA10	8HA10	8HA10	8HA10	8HA10	8HA10
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_H^{calcul\'ee}(cm^2)$	1.13	0.35	0.83	0.63	0.52	0.355
$A_H^{\min}(cm^2)$	0.4	0.4	0.4	0.4	0.4	0.4
$A_{\scriptscriptstyle H}^{\scriptscriptstyle adopt\acute{e}e}(cm^2)$	2HA10	2HA10	2HA10	2HA10	2HA10	2HA10

Tableau IV-23: sollicitations et ferraillage des voiles VY1

	<u> 1 avieau 1 v</u>	<u>-23</u> . Souttetta	itions et jerrai		es v I I	
				e V _{Y2}		
Niveau	RDC	Etage1	Etage 2	Etage 3-4-5	Etage 6-7	Etage 8-9
l(m)	3.6	3.6	3.6	3.6	3.6	3.6
e(m)	0.2	0.2	0.2	0.2	0.2	0.2
N(KN)	3343.06	2415.83	1846.14	544.77	256.37	76.29
M(KN.m)	4943.57	2666.96	2553.29	1053.03	881.14	249.81
V(KN)	874.43	729.78	803.07	602.72	355.19	190.06
τ_u	1.72	1.43	1.58	1.18	0.7	0.37
$\overline{ au}_u$	5	5	5	5	5	5
d(m)	3.55	3.55	3.55	3.55	3.55	3.55
A _{cal} (cm ²)	4.08	0	0	0.82	3.09	0.8
A _{min} (RPA) (cm ²)	10.8	10.8	10.8	10.8	10.8	10.8
$I(m^4)$	0.7776	0.7776	0.7776	0.7776	0.7776	0.7776
$\sigma^{ ext{max}}(Mpa)$	16.10	3.65	8.47	3.19	2.39	0.68
$\sigma^{ ext{min}}(Mpa)$	-6.78	-3.06	-3.34	-1.68	-1.68	-0.47
l _t (m)	1.06	1.64	1.02	1.24	1.48	1.46
$l_c(m)$	1.46	0.32	1.56	1.11	0.62	0.66
$A_{\min}^{tendue}(cm^2)$	4.24	6.56	4.07	4.96	5.92	5.84
$A_{\min}^{courant}(cm^2)$	2.92	0.63	3.12	2.22	1.24	1.32
$A_{ZC}^{Adopt\acute{e}}(cm^2)$	4HA10=3.14	4HA8=2.01	4HA10=3.14	4HA10=3.14	4HA10=3.14	4HA10=3.14
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_{\!\scriptscriptstyle V}^{\scriptscriptstyle adopt\'ee}(cm^2)$	10HA12	10HA12	10HA12	10HA12	10HA12	10HA12
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_{\!\scriptscriptstyle H}^{\scriptscriptstyle calcul\'ee}(cm^2)$	1.91	1.58	1.75	1.31	0.77	0.41
$A_H^{\min}(cm^2)$	0.4	0.4	0.4	0.4	0.4	0.4
$A_H^{adopt\acute{e}e}(cm^2)$	2HA12	2HA12	2HA12	2HA10	2HA10	2HA10

<u>Tableau IV-24:</u> sollicitations et ferraillage des voiles VY2

			voile	VY3		
Niveau	RDC	Etage1	Etage 2	Etage 3-4-5	Etage 6-7	Etage 8-9
l(m)	2.8	2.8	2.8	2.8	2.8	2.8
e(m)	0.2	0.2	0.2	0.2	0.2	0.2
N(KN)	-450.57	1128.31	556.69	192.07	-31.57	-92.49
M(KN.m)	397.14	532.08	770.49	523.46	381.40	273.75
V(KN)	495.68	408.85	432.64	330.82	177.49	86.46
τ_u	1.26	1.04	1.10	0.84	0.45	0.22
$\overline{\tau}_u$	5	5	5	5	5	5
d(m)	2.75	2.75	2.75	2.75	2.75	2.75
A _{cal} (cm ²)	9.35	4.08	0.32	2.42	3.89	3.67
A _{min} (RPA) (cm ²)	8.4	8.4	8.4	8.4	8.4	8.4

Chapitre	
IV	

ETUDE DES ELEMENTS STRUCTUREAUX

$I(m^4)$	0.3658	0.3658	0.3658	0.3658	0.3658	0.3658	
$\sigma^{\max}(Mpa)$	2.11	10.77	7.43	4.85	3.09	2.03	
$\sigma^{ ext{min}}(Mpa)$	-4.49	7.79	-4.93	-3.84	-3.25	-2.52	
$l_t(m)$	1.4	1.17	1.11	1.24	1.4	1.4	
$l_c(m)$	0	0.46	0.58	0.32	0	0 5.6	
$A_{\min}^{tendue}(cm^2)$	5.60	4.68	4.44	4.96	5.6		
$A_{\min}^{courant}(cm^2)$	0	0.92	1.16	0.64	0	0	
$A_{ZC}^{Adopt\acute{e}}(cm^2)$	(cm^2) / 41		4HA8=2.01	4HA8=2.01	/	/	
S _t (m)	0.2	0.2	0.2	0.2 12HA10 =9.42	0.2	0.2	
$A_V^{adopt\acute{e}e}(cm^2)$	12HA10 =9.42	12HA10 =9.42	12HA10 =9.42		12HA10 =9.42	12HA10 =9.42	
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2	
$A_H^{calcul\'ee}(cm^2)$	$A_H^{calcul\'ee}(cm^2)$ 1.4 1.15		1.22	0.93	0.5	0.24	
$A_H^{\min}(cm^2)$	0.4	0.4	0.4	0.4	0.4	0.4	
$A_{\scriptscriptstyle H}^{\scriptscriptstyle adopt\'ee}(cm^2)$	2HA10	2HA10	2HA10	2HA10	2HA10	2HA10	

Tableau IV-25: sollicitations et ferraillage des voiles VY3

	1 avieau 1 v - 2		voile `		, , 10	
Niveau	RDC	Etage1	Etage 2	Etage 3-4-5	Etage 6-7	Etage 8-9
l(m)	1.8	1.8	1.8	1.8	1.8	1.8
e(m)	0.2	0.2	0.2	0.2	0.2	0.2
N(KN)	-697.95	-162.42	1029.82	118.19	81.65	-90.01
M(KN.m)	461.96	160.54	598.11	264.59	230.82	156.12
V(KN)	266.63	195.19	234.52	175.83	119.12	79.01
$ au_u$	1.07	0.78	0.93	0.70	0.47	0.32
$\frac{-}{\tau_u}$	5	5	5	5	5	5
d(m)	1.75	1.75	1.75	1.75	1.75	1.75
A _{cal} (cm ²)	15.58	4.38	8.76	2.34	2.30	3.39
A _{min} (RPA) (cm²)	5.4	5.4	5.4	5.4	5.4	5.4
$I(m^4)$	$I(m^4)$ 0.0972 $\sigma^{\max}(Mpa)$ 6.21 $\sigma^{\min}(Mpa)$ -2.33		0.0972	0.0972	0.0972	0.0972
$\sigma^{\max}(Mpa)$			8.39	2.77	2.36	1.19
$\sigma^{\min}(Mpa)$			-2.67	-2.12	-1.90	-1.69
$l_t(m)$	0.49	0.90	0.43	0.78	0.80	0.90
$l_c(m)$	0.82	0	0.93	0.23	0.19	0
$A_{\min}^{tendue}(cm^2)$	1.96	3.6	1.72	3.12	3.2	3.6
$A_{\min}^{courant}(cm^2)$	1.63	0	1.86	0.46	0.76	0
$A_{ZC}^{Adopt\acute{e}}(cm^2)$	4HA8=2.01	1	4HA8=2.01	4HA8=2.01	4HA8=2.01	/
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_{V}^{adopt\acute{e}e}(cm^2)$	14HA12 =15.83	10HA10 =7.85	12HA10 =9.42	10HA10 =7.85	10HA10 =7.85	10HA10 =7.85
S _t (m)	0.2	0.2	0.2	0.2	0.2	0.2
$A_{\!\scriptscriptstyle H}^{\scriptscriptstyle calcul\'ee}(cm^2)$	1.18	0.86	1.03	0.77	0.53	0.35
$A_H^{\min}(cm^2)$	0.4	0.4	0.4	0.4	0.4	0.4
$A_{\scriptscriptstyle H}^{\scriptscriptstyle adopt\acute{e}e}(cm^2)$	2HA10	2HA10	2HA10	2HA10	2HA10	2HA10

<u>Tableau IV-26</u>: sollicitations et ferraillage des voiles VY4

Chapitre V

Etude des fondations

Introduction

L'infrastructure est l'ensemble des éléments, qui ont pour objectif le support des charges de la superstructure et les transmettre au sol. Cette transmission peut être directe (semelles posées directement sur le sol : fondations superficielles) ou indirecte (fondation profonde)

V.1. Choix du type des fondations :

Le choix du type des fondations dépend essentiellement, des facteurs suivants :

- La capacité portante du sol.
- ♣ Les Charges transmises au sol.
- **♣** La distance entre axes des poteaux.
- La profondeur du bon sol.

V.2. Combinaisons d'actions à considérer

Les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

✓
$$G+Q\pm E$$
 ✓ $G+Q$
✓ $0.8\times G\pm E$ RPA99 (Article 10.1.4.1) ✓ $1.35G+1.5Q$ DTR BC 2.33.1

V.3. Etude du radier

On va opter pour un radier général comme type de fondation, vu la faible portance du sol d'assise $\overline{\sigma s} = 1.38 \, MPA$, ce type de fondation présente plusieurs avantages qui sont :

- ♣ L'augmentation de la surface de la semelle qui minimise la forte pression apportée par la structure.
- **♣** La réduction des tassements différentiels.
- **♣** La facilité d'exécution.

V.3.1.Pré dimensionnement

a)Condition de coffrage Pour les nervures

$$h_t \ge \frac{l \max}{10}$$
.....(1); avec h_t est la hauteur de la nervure.

 $L_{\rm max}$: La plus grande portée entre deux éléments porteurs successifs. ; $L_{\rm max}$ = 645 cm

En remplaçant dans la relation (1) on obtient : $h_t \ge 0.645$ cm

Pour la dalle : $h_r \ge \frac{Lmax}{20} = 32.25$ On opte pour une hauteur $h_r = 35cm$

b) La condition de raideur (rigidité)

Pour un radier rigide, il faut que
$$L_{\text{max}} \leq \frac{\pi \times l_e}{2}$$
....(1)

$$l_{e} = \sqrt[4]{\frac{4 \times EI}{K \times b}} \quad ; l_{e} \text{ est la longueur \'elastique.} \qquad (2)$$

E: Module de Young.

I: Moment d'inertie de l'élément considéré sur 1 ml.

K : coefficient de raideur du sol.

$$K = \begin{cases} 0.5 \text{ Kg/cm}^3 & \text{Très mauvais sol} \\ 4 \text{ Kg/cm}^3 & \text{Sol moyen} \\ 12 \text{ Kg/cm}^3 & \text{Très bon sol} \end{cases}$$
; Dans notre cas on a un sol moyen donc K=0.5Kg/cm³.

b : Largeur de l'élément considéré par ml, on prend 1ml.

$$I = \frac{b \times h_t^3}{12} \dots \tag{3}$$

De (1), (2) et (3)
$$\Rightarrow h_t \ge \sqrt[3]{\frac{48 \times L_{\text{max}}^4 \times K}{\pi^4 \times E}}$$
; Donc: $h_t \ge \sqrt[3]{\frac{48 \times 6.3^4 * 0.5}{3.14^4 \times 3.216 \times 10^4}} \Rightarrow h_t \ge 0.51 \text{ m}$

entre les deux conditions On opte pour une hauteur $h_t = 65$ cm

c) La surface du radier

L'effort N représente le poids total de la superstructure ainsi que le poids propre du radier et des nervure, soit N=59819.48 KN

$$\frac{N_{ser}}{S_{rad}} \le \bar{\sigma}_{sol} \Rightarrow S_{rad} \ge \frac{N_{ser}}{\bar{\sigma}_{sol}} = \frac{59819.48}{138} = 433.47 m^2$$

Or la surface du bâtiment est $S_{bat}=378.15m^2$.

$$S_{rad} \succ S_{bat} \rightarrow le$$
 débord est nécessaire

V.3.2 Les vérifications nécessaires

a) Vérification du poinçonnement :

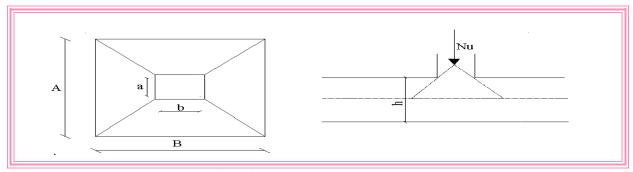


Fig.V.1. Zone de contact du poteau

Il faut vérifier que :
$$N_U \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_h}$$
 (CBA93 article A.5.2.4.2)

 N_{II} : L'effort normal sur le poteau le plus sollicité.

 U_c : Le périmètre du contour cisaillé projeté sur le plan moyen du radier ; $U_c = 2 \times (A + B)$

$$\begin{cases}
A = a + h \\
B = b + h
\end{cases}
\Rightarrow
\begin{cases}
A = 0.75 + 0.65 = 1.4m \\
B = 0.75 + 0.65 = 1.4m
\end{cases}$$

Apres le calcul on trouve Uc = 5.6 m ce qui donne :

Nu =4.116 MN.m<0.045×5.6 × 0.65 ×
$$\frac{25}{1.5}$$
 =2.73 MN.mNO.verifiée

On constate que ya un risque de poinconement, donc on doit augmenter la hauteur totale de la section, apres pleusieurs itérations on opte pour h_t =0.9m

on aura donc
$$\Longrightarrow$$
 $\begin{cases} A = 0.75 + 0.9 = 1.65m \\ B = 0.75 + 0.9 = 1.65m \end{cases} \Leftrightarrow v_c = 6.6m$

$$N_d = 4.116MN < 4.455 MN$$
pas de risque de poinçonnement

b) Vérification des contraintes dans le sol DTR BC 2.3.3.1 (Art.3.541 a)

$$\sigma_{moy} = \frac{3\sigma_1 + \sigma_2}{4} \le \sigma_{sol} \text{Avec} : \sigma_{1,2} = \frac{N}{S_{rod}} \pm \frac{M}{I} \times Y$$

A partir du programme **Autocad** on trouve : $\begin{cases} X_g = 10.14m.; I_{xx} = 10743.1490m^4 \\ Y_g = 8.845m.; I_{yy} = 13971.5521m^4 \\ S_{rad} = 433.47m^2 \end{cases}$

• Dans le sens xx

$$\sigma_{1,2} = \frac{N}{S_{rad}} \pm \frac{M_y}{I_y} \times Y_g$$

L'effort N et le moment M doivent être à l'ELS car la contrainte admissible du sol est obtenue l'ELS.

N= 59819.48 KN et M_x =40696.0067 KN.m

$$\begin{split} \sigma_1 &= \frac{N}{S_{rad}} + \frac{M_x}{I_x} \times Y_g \Longrightarrow \sigma_1 = 0.171 MPA \quad ; \quad \sigma_2 = \frac{N}{S_{rad}} - \frac{M_x}{I_x} \times Y_g \Longrightarrow \sigma_2 = 0.104 MPA \\ \sigma_{moy} &= \frac{3 \times 0.171 + 0.104}{4} \quad \Longrightarrow \sigma_{moy} = 0.154 Mpa \end{split}$$

• Dans le sens y-y

$$M_{\nu} = 29379.632$$
KN.M

$$\sigma_{1} = \frac{N}{S_{rad}} + \frac{M_{y}}{I_{y}} \times X_{g} \Rightarrow \sigma_{1} = 0.159 MPA \qquad ; \quad \sigma_{2} = \frac{N}{S_{rad}} - \frac{M_{y}}{I_{y}} \times X_{g} \Rightarrow \sigma_{2} = 0.116 MPA$$

$$\sigma_{moy} = \frac{3 \times 0.159 + 0.116}{4} \Rightarrow \sigma_{moy} = 0.148 Mpa$$

$$\sigma_{moy} \succ \overline{\sigma}_{sol}$$
non vérifiée.

La contrainte n'est pas vérifiée dans les deux sens d'où il est judicieux d'augmenter la surface du radier

Le débord D doit vérifiée la condition suivante :

$$D \ge \max(\frac{h_r}{2}; 30cm) \Rightarrow on$$
 opte pour un débord D=130cm

Le débord est représenté au dessous :

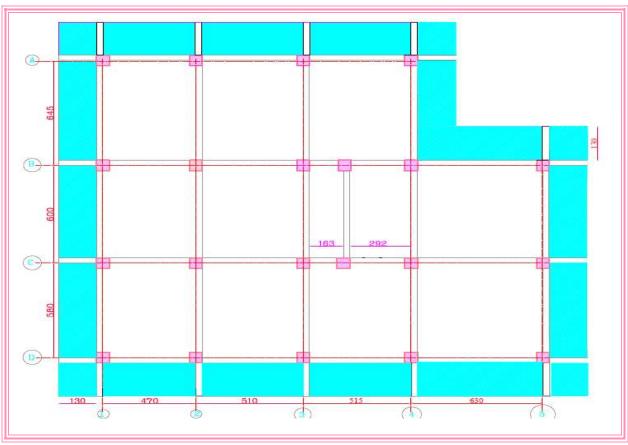


Fig.V.2. schéma représentatif du débord du radier

-Les caractéristiques géométriques du radier deviennent :
$$\begin{cases} X_g = 11.6112m.; I_{XX} = 16268.2383m^4 \\ Y_g = 9.8547m.; I_{YY} = 22514.4675m^4 \\ S_{rad} = 477m^2 \end{cases}$$

Apres le calcul on trouve les résultats suivants :

• Dans le sens xx

• Dans le sens y-y

$$\sigma_{1} = \frac{N}{S_{rad}} + \frac{M_{y}}{I_{y}} \times X_{g} \Rightarrow \sigma_{1} = 0.140 MPA \qquad ; \quad \sigma_{2} = \frac{N}{S_{rad}} - \frac{M_{y}}{I_{y}} \times X_{g} \Rightarrow \sigma_{2} = 0.110 MPA$$

$$\sigma_{moy} = \frac{3 \times 0.1424 + 0.08}{4} \Rightarrow \sigma_{moy} = 0.132 Mpa$$

$$\sigma_{moy} \prec \overset{-}{\sigma}_{sol}$$
 vérifiée.

On constate que les contraintes moyennes sous le radier sont vérifiées selon les deux sens après augmentation de la surface du radier avec un débord de 130 cm (après plusieurs itérations qui ne satisfait pas la vérification des contraintes on opte pour D=130cm).

c) Vérification de la stabilité au renversement

Selon le RPA 99/version 2003, On doit vérifier que :

$$e = \frac{M}{N} \le \frac{B}{4}$$

Sens x-x :
$$e = \frac{40.696}{59.819} \Rightarrow e = 0.680m < 5.56m$$
 ... c'est vérifié

d) Vérification au cisaillement :

$$\tau_u = \frac{V_d}{b \times d} \le \bar{\tau}_u = \min\left(\frac{0.15 \times f_{c28}}{\gamma_b}; 4 \, MPa\right) = \min(2.5 \, MPa; 4 \, MPa) = 2.5 \, MPa$$

Avec:
$$V_d = \frac{N_d \times L_{max}}{2S_{rad}} = \frac{79.2481 \times 6.45}{2 \times 517.36} = 493.9 \text{ KN}$$

Donc:

$$d \ge \frac{V_d}{b \times \bar{\tau}_u} \Longrightarrow d \ge \frac{493.9 \times 10^{-3}}{1 \times 2.5} = 0.20 \ m$$

e)Vérification de la poussée hydrostatique

La condition à vérifier est la suivante :

$$N \ge f_s \times H \times S_{rad} \times \gamma_w$$

Avec:

$$f_s$$
: Coefficient de sécurité ($f_s = 1.5$);

H: Hauteur de la partie ancrée du bâtiment (H = 3.06m)

$$S_{rad}$$
: Surface du radier ($S_{rad} = 477m^2$);

 γ_w : Poids volumique de l'eau ($\gamma_w = 10 \ KN/m^3$).

$$N = 59819.48KN \ge 1.5 \times 3.06 \times 477 \times 10 = 21894.3KN \dots vérifiée$$

V.3.3 La dalle du radier

Le radier sera calculé comme une dalle pleine renversée nervurée en flexion simple, sachant que La fissuration est préjudiciable. Le calcul se fera pour le panneau le plus défavorable et on Adoptera le même ferraillage pour tout le radier de dimension $l_x = 5.10 - 0.75 = 4.35 \, m$; $l_x = 6.45 - 0.75 = 5.7 \, m$

Calcul des sollicitations

A L'ELU:

✓ Calcul du poids propre du radier :

$$p_{rad} = h_{rad} \times s_{rad} \times \gamma_b = 0.35 \times 477 \times 25 = 4173.75 KN$$

✓ Calcul du poids de la nervure :

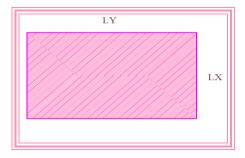


Fig.V.3. le panneau le plus sollicité

$$p_{ner} = b_{pot} \times (h_t - h_{rad}) \times \gamma_b \times L_{ner} = 0.75 \times (0.9 - 0.35) \times 25 \times 169.125 = 1744.10 KN$$

Donc:
$$N_U = N_u^{cal} + 1.35(P_{rad} + P_{ner}) = 74195.259 + 1.35(4173.75 + 1744.10) = 82184.35KN$$

Ce qui donne :
$$Q_u = \frac{82184.35}{477} = 172.29 \, KN / m^2$$

Pour le panneau le plus sollicité On a:

$$\rho = \frac{l_x}{l_y} = \frac{4.35}{5.7} = 0.76 > 0.4L$$
 \Longrightarrow a dalle travail dans les deux sens.

$$\text{D'où:} \qquad \rho = 0.76 \Longrightarrow \begin{cases} \mu_x = 0.0608 \\ \mu_y = 0.5274 \end{cases} \qquad \Longleftrightarrow \begin{array}{l} M_t^x = 0.85 \, M_{0x} = 168.48 \, KN.m \\ M_t^y = 0.85 \, M_{0y} = 88.86 \, KN.m \\ M_{ax} = M_{ay} = -0.5 \, M_{0x} = -99.105 \, KN.m \end{cases}$$

Les résultats de ferraillages sont récapitulés dans le tableau suivant (1×0.35) :

Localisation		$M_t(KN.m)$ $A_{cal} (cm^2/ml)$		Nombre de barres	S _t (cm)
Travée	X-X	168.48	17.38	6HA20=18.85	16,5
114,00	у-у	88.86	8.83	8HA12=9.05	12.5
Appui		-99.105	9.90	7HA14=10.78	14.2

Tableau. 1. Ferraillage du radier

• Condition de non fragilité

On a:

$$\begin{cases} \rho = 0.76 > 0.4 \\ e = 35 \ cm > 12 \ cm \end{cases} \begin{cases} A_x^{min} = \rho_0 \times \left(\frac{3-\rho}{2}\right) \times b \times h_r \\ A_y^{min} = \rho_0 \times b \times h_r \end{cases} \begin{cases} A_x^{min} = 0.0008 \times \left(\frac{3-0.76}{2}\right) \times 0.35 \times 1 = 3.136 \ cm^2 \\ A_y^{min} = 0.0008 \times 1 \times 0.35 = 2.8 \ cm^2 \end{cases}$$

en appuis :
$$A_{min} = 0.23 * b * d * \frac{f_{t28}}{f_e} = 3.62 cm^2$$

Effort tranchant:

Vérification de l'effort tranchant :

On doit vérifier que :

$$\tau_u = \frac{V_u}{b \times d} \le \tau_{adm} = 1.17 \; MPa$$

On a:

$$V_x = \frac{Q_u \times l_x}{2} \times \frac{l_y^4}{l_y^4 + l_x^4} = \frac{172.29 \times 4.35}{2} \times \frac{(5.7)^4}{(4.35)^4 + (5.7)^4} \Rightarrow V_x = 279.81 \, KN$$

$$V_y = \frac{Q_u \times l_y}{2} \times \frac{l_x^4}{l_y^4 + l_x^4} = \frac{175.63 \times 5.7}{2} \times \frac{(4.35)^4}{(4.35)^4 + (5.7)^4} \Rightarrow V_y = 124.37 \text{ KN}$$

$$\tau_u = \frac{279.81 \times 10^{-3}}{1 \times 0.30} = 0.93 \, MPa \le \tau_u = 1.17 MPa \dots vérifiée.$$

Vérifications à l'ELS

Donc:
$$N_s = N_s^{cal} + (P_{rad} + P_{ner}) = 54766.57 + (4173.75 + 1744.10) = 60684.42KN$$

Donc :
$$q_s = \frac{60684.42}{477} = 127.22 \, kn/m^2$$

Calcul des moments :

$$\begin{cases} M_{tx} = 137.50 KN. m \\ M_{ty} = 106.44 KN. m \\ M_a = -80.88 KN. M \end{cases} \qquad \begin{cases} \mu_x = 0.0672 \\ \mu_y = 0.6580 \end{cases}$$

Vérification des contraintes :

Localis	ation	M _s (KN.m)	" I (cm)		$\sigma_{bc} \le \overline{\sigma_{bc}}$ (MPa)	Obs	$\sigma_{st} \le \overline{\sigma_{st}} $ (MPa)	Obs
Travée	X-X	x 137.50 10.50		146103.19	9.88< 15	vérifiée	275.26> 201.63	N.vérifiée
Travee	у-у	106.44	7.77	82720.55	10< 15	vérifiée	429.08> 201.63	N.vérifiée
App	ui	-80.88	8.36	95198.31	7.11< 15	vérifiée	275.72> 201.63	N.vérifiée

Tableau. V.2. Vérification des contraintes du radier à l'ELS.

❖ La contrainte de traction n'est pas vérifiée, donc on doit calculer les armatures à l'ELS

Localisation		M _s (KN.m)	$\beta \times 10^{-3}$	α	A _{cal} (cm ² /ml)	Nombre de barres	S _t (cm)
Travée	X-X	137.50	0.008	0.458	26.82	9HA20=28.63	11
Travee	у-у	106.44	0.006	0.403	20.32	7HA20=21.99	14.2
Appui		-80.88	0.004	0.351	15.14	8HA16=16.08	12.5

Tableau V.3: Calcul des armatures à l'ELS.

Localisat	ion	M _s (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc} \le \overline{\sigma_{bc}}$ (MPa)	Obs	$\sigma_{st} \le \overline{\sigma_{st}}$ (MPa)	Obs
Travée	х-х	137.50	50 12.32 196570		8.62< 15	vérifiée	185.48> 201.63	vérifiée
Travee	у-у	106.44	11.15	163409.65	7.26< 15	vérifiée	184.16> 201.63	vérifiée
Appui		-80.88	9.86	129788.28	6.14< 15	vérifiée	188.28> 201.63	vérifiée

Tableau V.4. vérification des contraintes à l'ELS âpres augmentation du ferraillage

Vérification des espacements :

$$s_t \le \min(2.5h_r; 25cm) = 25cm$$

Rq: Le schéma de ferraillage sera exposé dans l'annexe n°

V.3.4. Ferraillage des débords :

Le débord est assimilé à une console de 1m de longueur soumis à la flexion simple ($\rho < 0.4$).

$$M_u = q_u \times \frac{l^2}{2} = 172.29 \times \frac{1.3^2}{2} = 145.58 \text{KNm}$$

 $M_s = q_s \times \frac{l^2}{2} = 127.22 \times \frac{1.3^2}{2} = 107.50 \text{KN.m}$

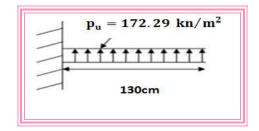


Figure V.4. Schéma statique du débord

Le calcul du ferraillage et les vérifications sont récapitulés dans le tableau suivant

$q_u(KN/m^2)$	M _u (KNm)	$A_{alcul\acute{e}}(c m^2/ml)$	n° de barre	$A_{opt\acute{e}}(cm^2/ml)$	M _s (KNm)	A _{radopté}	$\sigma_{bc}(MPa)$	$\overline{\sigma_{bc}}(MPa)$	$\sigma_s(MPa)$	$\sigma_s(MPa)$
161.39	145.58	14.85	6Ø14 + 6Ø12	16.03	107.50	5Ø12= 5.65	8.17< 15	15	250.99	201.63

Tableau V.5. Résumé des résultats du ferraillage

La contrainte de traction d'acier n'est pas vérifiée, donc on recalcule les armatures à l'ELS

Localisatio	n	M _s (KN.m)	$\beta \times 10^{-3}$	α	A _{cal} (cm ² /ml)	Nombre de barres	$\sigma_{st} \le \overline{\sigma_{st}}$ (MPa)	S _t (cm)
Travée		107.50	0.006	0.405	20.54	7HA20=21.99	186≤ 201.63	14.5

Tableau V.6 vérification des contraintes de débord à l'ELS après augmentation du ferraillage

Vérification de la contrainte de cisaillement:

$$\tau_u = \frac{V_u}{b \times d} \le \overline{\tau}_u = \min(0.1 \times f_{c28}; 3MPa) = 2.5MPa$$

Sachant que : $V_u = q_u \times l = 189.254KN$

$$\tau_u = \frac{V_u}{b \times d} = 0.630 MPa < 2.5 MPa$$
 c'est vérifié

Rq: Le schéma de ferraillage sera exposé dans l'annexe n° 10

V .4.Etude des nervures

Les nervures sont des poutres en sections Té renversé servant d'appuis pour la dalle du radier. La répartition des charges sur chaque travée est triangulaire ou trapézoïdale selon les lignes de ruptures comme indiqué sur la figure

V .4.1 Les sollicitations sur les nervures :

Les sollicitations sur les nervures sont calculées en utilisant la méthode de Caquot car on a des charges modérées et la fissuration est préjudiciable. Les charges appliquées sur elle sont déduites des panneaux par la méthode des lignes de rupture comme indiquée sur la figure suivante

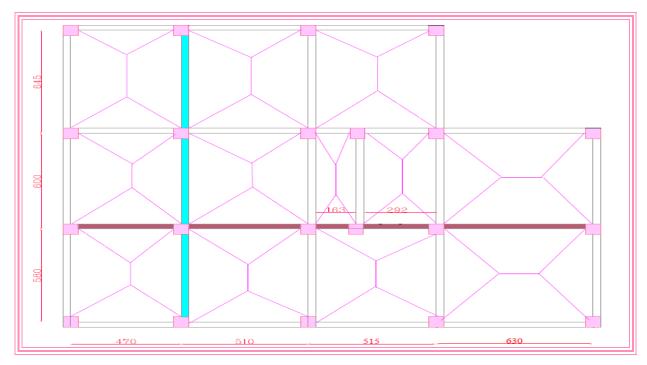


Fig. V.5. schéma des lignes de ruptures

On à $\rho = 0.76 > 0.4 \Rightarrow$ la transmission des charges sera subdivisée en deux charges (trapézoïdales et triangulaires).

On a : Des charges triangulaires sur les nervures // à la petite porté du panneau

Des charges trapézoïdales sur les nervures // à la grandes porté du panneau

• Charge triangulaire:

 $P_M = P_V = \frac{q_u \times \sum l_{x_i}^2}{2 \times \sum l_{x_i}}$ Avec P charge équivalente produisant le même moment que la charge

triangulaire.

• Charge trapézoïdale :

$$\begin{split} P_{M} &= \frac{q_{U}}{2} \left[\left(1 - \frac{\rho_{g}^{2}}{3} \right) \times l_{xg} + \left(1 - \frac{\rho_{d}^{2}}{3} \right) \times l_{xd} \right] \\ P_{V} &= \frac{q_{u}}{2} \left[\left(1 - \frac{\rho_{g}}{2} \right) \times l_{xg} + \left(1 - \frac{\rho_{d}}{2} \right) \times l_{xd} \right] \end{split}$$

$$\rho_{g} = \frac{l_{xg}}{l_{y}} \ et \ \rho_{d} = \frac{l_{xd}}{l_{y}}$$

Les nervures les plus défavorables sont montrées sur les figures ci-dessous

> Sens X-X:

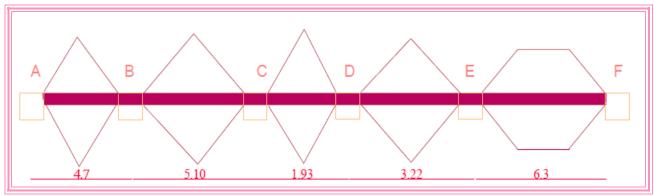


Fig. V.6. schéma de la nervure la plus sollicité selon X-X

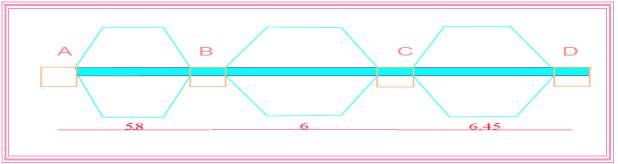


Fig.V.7 schéma de la nervure la plus sollicité selon y-y

A Calcul du chargement :

$$\begin{cases} N_u = N_u - p_{ner} = 82184.35 - 1.35 \times 1744.10 = 79829.29 \, KN \; ; \; p_u = 167.35 \, KN \, / \, m \\ N_s = N_s - p_{ner} = 60684.42 - 1744.10 = 58940.32 \, KN \; ; \; p_s = 123.56 \, KN \, / \, m \end{cases}$$

Calcul des sollicitations par la méthode de Caquot :

Dans le calcul des sollicitations on doit rajouter le poids des nervures :

$$\begin{aligned} p_{ner}^{U} &= 1.35 \times b_{pot} \times h_{t} \times \gamma_{b} = 1.35 \times 0.75 \times 0.55 \times 25 = 13.92 \, kn/m \\ p_{ner}^{S} &= b_{pot} \times h_{t} \times \gamma_{b} = 0.75 \times 0.55 \times 25 = 10.31 \, kn/m \end{aligned}$$

Remarque: les valeurs de q_m (calcul du chargement) sont déjà calculer, et donner dans ce tableau après l'ajout du poids de la nervure.

❖ Les résultats des calculs sont récapitulés dans le tableau suivant pour le sens X-X :

Travée	L(m)	q_m	M _a (KN.m)		X (m)	M_t
		(KN/m)	M_g	M_d		(KN.m)
A-B	4.7	538.27	0	-1599.12	1.72	794.27
В-С	5.1	589.90	-1599.12	-1366.49	2.63	414.13
C-D	1.93	195.76	-1366.49	-322.76	4.09	267.63
D-E	3.22	373.15	-322.76	-2386.12	-0.11	-320.62
E-F	6.3	722.37	-2386.12	0	2.93	721.26

Tableau V.7. Sollicitations de la nervure dans le sens X-X à l'ELU

Travée	L(m)	q_m	M _a (KNm)		X (m)	M_t
		(KN/m)	M_g	M_d		(KNm)
A-B	4.7	397.46	0	-1180.77	1.72	586.50
В-С	5.1	430.40	-1180.77	-1009	2.63	305.77
C-D	1.93	144.77	-1009	-238.36	4.09	196.42
D-E	3.22	275.54	-238.36	-1764.85	-0.11	-236.67
E-F	6.3	534.35	-1764.85	0	2.93	533.64

Tableau V.8. Sollicitations de la nervure dans le sens X-X à l'ELS

❖ Les résultats des calculs sont récapitulés dans le tableau suivant pour le sens Y-Y:

Travée	L(m)	q_m	$M_a(KNm)$		X (m)	M_t	
		(KN/m)	M_g	M_d		(KNm)	
A-B	5.8	648.96	0	-2693.52	2.18	1548.28	
В-С	6	664.54	-2693.52	-3104.33	2.9	95.03	
C-D	6.45	689.34	-3104.33	0	3.16	346.93	

Tableau VI.9 Sollicitations de la nervure dans le sens y-y à l'ELU

Travée	L(m)	q_m	$M_a(KNm)$		X (m)	M_t	
		(KN/m)	M_g	M_d		(KNm)	
A-B	5.8	579.18	0	-1988.84	2.18	1143.22	
В-С	6	490.68	-1988.84	-2292.15	2.9	70.17	
C-D	6.45	508.99	-2292.15	0	3.16	256.16	

Tableau V.10 Sollicitations de la nervure dans le sens y-y à l'ELS

V.4.2. Ferraillage:

Le Ferraillage se fera pour une section en Té en flexion simple.

$$h=0.9\text{m}$$
 ; $h_0=0.35\text{m}$; $b_0=0.75\text{m}$

Sens X-X:

$$\frac{b-b_0}{2} \le \min(\frac{l_y}{10}; \frac{l_x}{2}) \Rightarrow b \le \min(\frac{5.05}{10}; \frac{5.55}{2})$$

 $b \le 1.79$

soit : b = 1.7m

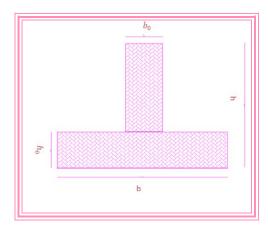


Fig.V.8. section à ferrailler

Sens Y-Y:

$$\frac{b - b_0}{2} \le \min(\frac{l_y}{10}; \frac{l_x}{2}) \Rightarrow b \le \min(\frac{5.7}{10}; \frac{3.95}{2})$$

$$b \le 1.89$$

$$soit: b = 1.8m$$

Les résultats du ferraillage sont récapitulés dans le tableau suivant :

Sens	Localisation	$M_u(KNm)$	A_{cal} (cm ²)	A_{min} (cm ²)	$A_{adopt\acute{e}}$ (cm ²)
X-X	Travée	794.27	27.49	17.44	$6\emptyset20 + 6\emptyset14 = 28.09$
	Appui	-2386.12	87.10	17.44	$8\emptyset 32 + 8\emptyset 25 = 87.52$
Y-Y	Travée	1548.28	54.74	18.47	$6\emptyset25 + 10\emptyset20 = 60.87$
	Appui	-3104.33	115.66	18.47	$16\emptyset 32 = 128.68$

Tableau V.11 Résumé des résultats de ferraillage des nervures

V.4.3.Armatures de peau

D'après le CBA (ARTA.7.3) on doit mettre des armatures de peau pour éviter tout risque de fissure, vue la hauteur de la section des nervures qui est importante

$$A_p = 0.2\%(b_0 \times h) = 0.002 \times (75 \times 90) = 13.5 cm^2 \rightarrow \text{soit } A_p = 4HA16 + 2HA20 = 14.32 cm^2$$

> Vérification de l'effort tranchant :

$$V_{\text{max}} = \frac{q \times l}{2} + \frac{M_g + M_d}{l} = 2.95MN$$

$$\tau_u = \frac{V_{\text{max}}}{h \times d} = 1.92MPa < 2.5MPa.$$

> Armatures transversales :

$$\varphi_t \le \min(\frac{h}{35}; \frac{b_0}{10}; \varphi_t) = \min(25.71; 75; 25) = 25mm \text{ Soit } \varphi_t = 10mm.$$

Soit 6HA10=4.71 cm² (cadre entourant les barre des angles plus un petit cadre pour ceux du milieu

Espacement des aciers transversaux :

$$\begin{cases} s_{t} \leq \min(0.9d; 40cm) \leq 40cm \\ s_{t} \leq \frac{A_{t} \times f_{e}}{0.4 \times b_{0}} \leq 62.8cm \\ s_{t} \leq \frac{0.8 \times A_{t} \times f_{e}}{b_{0} (\tau_{u} - 0.3f_{c28})} \leq 16.2 \end{cases}$$

On opte pour st=15 cm en travée, et st =10cm en zone nodale.

Vérification des contraintes :

Il faut vérifier que :

$$\begin{split} &\sigma_b = \frac{M_{ser}}{I} \times y \le \overset{-}{\sigma}_b = 0.6 \times f_{c28} = 15MPa. \\ &\sigma_s = 15 \times \frac{M_{ser}}{I} \times (d-y) \le \overset{-}{\sigma}_s = 201.63MPa. \end{split}$$

Les résultats sont récapitulés dans le tableau suivant :

Sens	Localisation	$M_{ser}(KNm)$	$\sigma_b(MPa)$	$\overline{\sigma}_b(MPa)$	$\sigma_s(MPa)$	$\overline{\sigma}_s(MPa)$
X-X	Travée	586.50	4.81	15	264.67	201.63
	Appui	-1764.85	9.41	15	268.06	201.63
Y-Y	Travée	1143.22	6.69	15	319.90	201.63
	Appui	-2292.15	10.35	15	241.04	201.63

Tableau V.12 Résumé des résultats de vérification des contraintes

La contrainte de traction d'acier n'est pas vérifiée, donc on recalcule les armatures à l'ELS

Localisation		M _s (KN.m)	$\beta \times 10^{-3}$	α	A _{cal} (cm ² /ml)	Nombre de barres	$\sigma_{st} \leq \overline{\sigma_{st}}$ (MPa)	S _t (cm)	
X-X	X-X travée		586.50	2	0.256	37.41	$8\emptyset 25 = 39.27$	191.52≤ 201.63	15
	appui		-1764.85	7	0.444	120.85	$12\emptyset 32 + 2\emptyset 40 = 121.64$	196.34≤ 201.63	10
Y-Y travée		1143.22	4	0.347	75.43	$6\emptyset 32 + 6\emptyset 25 = 77.71$	193.85≤ 201.63	15	
	appui		-2292.15	9	0.491	159.94	$12\emptyset40 + 2\emptyset25 = 160.62$	195.63≤ 201.63	10

Tableau V.13 Résumé des résultats de recalcule de ferraillage à l'ELS

V.4.4.schéma de ferraillage des nervures :

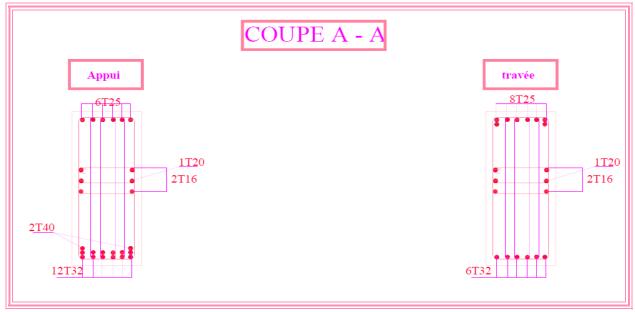


Fig.V.9 schéma de ferraillage de la nervure sens X-X

↓ Le schéma de ferraillage du sens Y-Y sera exposé dans l'annexe N°10

V.5. Etude du voile périphérique

Le voile périphérique est un panneau vertical en béton armé entourant une partie ou la totalité de l'immeuble, destiné à soutenir l'action des poussées des

terres et les transmettre aux poteaux.

a)Dimensionnement

Selon le RPA 99/version2003

 $e \ge 15cm$; On prend e = 20cm

b) Caractéristiques géotechniques du sol

L'angle de frottement interne : $\phi = 20^{\circ}$

La cohésion : $C = 0 \text{ KN/m}^2$

Poids volumique des terres humide: $\gamma_h = 18,5 KN / m^3$

m^3

a) Evaluation des charges et surcharges

• La poussée des terres sur le rideau

5.7m

0.2m

2.56m

$$G = h \times (tg^{2}(\frac{\pi}{4} - \frac{\phi}{2})) - 2 \times C \times tg(\frac{\pi}{4} - \frac{\phi}{2}) \Rightarrow G = 19.8 \times 9.56 \times (tg^{2}(\frac{\pi}{4} - \frac{16.54}{2})) - 2 \times 0 \times tg(\frac{\pi}{4} - \frac{20}{2})$$

 $G = 24.85 KN / m^2$

Surcharges accidentelle : $q = 10 KN / m^2$

$$Q = q \times tg^{2}(\frac{\pi}{4} - \frac{\phi}{2}) \Rightarrow Q = 10 \times tg^{2}(\frac{\pi}{4} - \frac{20}{2}) \Rightarrow Q = 4.9KN / m^{2}$$

b) Ferraillage du voile

Le voile s'est appuyé sur la structure (poteau – poutre) la transmission des charges se fait comme une dalle pleine sur quatre appuis.

$$\begin{split} &\sigma_{\min} = 1.5 \times Q = 1.5 \times 4.9 \Rightarrow \sigma_{\min} = 7.36 \textit{KN} \, / \, m^2 \\ &\sigma_{\max} = 1.35 G + 1.5 \times Q = 1.35 \times 28.85 + 1.5 \times 4.9 \Rightarrow \sigma_{\max} = 40.90 \textit{KN} \, / \, m^2 \\ &\sigma_{\max} = \frac{3 \times 40.90 + 7.36}{4} \Rightarrow \sigma_{\max} = 32.515 \textit{KN} \, / \, m^2 \; ; \; \rho = \frac{l_x}{l_y} = \frac{2.56}{5.7} = 0.44 > 0.4 \Rightarrow \text{La dalle} \end{split}$$

travaille dans les deux sens.

• A l'ELU $\begin{cases} \mu_x = 0.1049 \\ \mu_y = 0.25 \end{cases}; P_u = 32.515KN$

-En travée
$$M_x^0 = \mu_x q_u L_x^2 \Rightarrow M_x^0 = 22.35 \text{KN.m}$$
 ; $M_y^0 = \mu_y M_x^0 \Rightarrow M_y^0 = 5.58 \text{KN.m}$

$$M_t^x = 0.85 \times M_0^x = 18.99 \text{KNm}$$
; $M_t^y = 0.85 \times M_0^y = 4.74 \text{KNm}$

-**En appui**
$$M_a = 0.5 \times M_0^x \Rightarrow M_a^x = -11.17 \, KN.m$$

• À l'ELS

$$\begin{cases} \mu_x = 0.1075 \\ \mu_y = 0.3155 \end{cases} ; P_s = 23.54 \text{ KN/ml}$$

$$M_0^x = \mu_x \times q_S \times l_x^2 \Rightarrow M_0^x = 16.58 \text{KN.m}$$
 ; $M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = 5.23 \text{KN.m}$

-En travée
$$M_t^x = 0.85 \times M_0^x = 14.09 \, \text{KN.m}$$
; $M_t^y = 0.85 \times M_0^y = 4.44 \, \text{KN.m}$

-En appui
$$M_a = 0.5 \times M_0^x \Rightarrow M_a^x = -8.29 KN.m$$

❖ Le calcul du ferraillage est résumé dans ce tableau

Localisation		M(KN.m)	μ_{bu}	α	Z (m)	A cal(cm²/ml)	A_{min}	A _{adoptée} (cm²/ml)
En travée	Sens-x	18.99	0 ,059	0.076	0,145	3.76	2	4T10=3.14
	Sens-y	4.74	0,0148	0,0186	0,149	0.914	2	4T12=3.14
En appui		-11.17	0,035	0,044	0,147	2.18	2	4T10=3.14

Tableau.VI.14. Tableau de ferraillage du voile périphérique

• Espacement des armatures :

Armatures //
$$L_x$$
: St = 25cm \leq min (2e, 25 cm) = 25 cm

Armatures // Ly:
$$St = 25 \text{cm} \le \min (2e, 33 \text{cm}) = 25 \text{ cm}$$

• Vérification de la condition de non fragilité

$$e = 20cm \\ \rho > 0.44$$
 $\Rightarrow \begin{cases} A_{\min}^{x} = \rho_{0} \times \frac{3 - \rho}{2} \times b \times e \Rightarrow A_{\min}^{x} = 2.048cm^{2}.$. C'est vérifiée
$$A_{\min}^{y} = \max(\rho_{0} \times b \times e; \frac{A_{t}^{x}}{4}) \Rightarrow A_{\min}^{y} = 1.6cm^{2}.$$
 . C'est vérifiée

• Vérification de l'état limite de compression du béton

On doit vérifie:

$$\sigma_{bc} = \frac{M_{ser}}{I} y < \overline{\sigma} = 15MPa$$

$$\sigma_s = 15 \frac{M_{ser}}{I} (d - y) < \overline{\sigma_s} = \min(\frac{2}{3} f_e; 110 \sqrt{\eta - f_{c28}}) = 210.63 MPa$$
 (F.T.N)

Les résultats de calcul et vérification sont résumés dans le tableau suivant :

ETUDE DE L'INFRASTRUCTURE

Localisat	ion	M _s (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc} \le \overline{\sigma_{bc}}$ (MPa)	Obs	$\sigma_{st} \le \overline{\sigma_{st}}$ (MPa)	Obs
Teoriáo	X-X	14.09	3.32	7645.32	6.12< 15	vérif iée	392.88> 201.63	N.vérifiée
Travée	у-у	4.44	3.32	7645.31	1.93< 15	vérif iée	101.75> 201.63	vérifiée
Appui		-8.29	3.32	7645.31	3.6< 15	vérif iée	189.97> 201.63	vérifiée

Tableau.15. résultats de calcul et vérification à l'ELS du voile périphérique

❖ La contrainte de traction n'est pas vérifiée en travée dans le sens x on doit recalculer les armatures à l'ELS.

Localisation		M _s (KN.m)	β 10^{-3}	α	A_{cal}	A_{adop}	st
Travée	x-x	14.09	3.10	0.268	5.11	5Ø12 = 5.65	25

<u>Tableau. V.16</u> résultats de calcul et vérification à l'ELS du voile périphérique Vérifications des contraintes après augmentation de ferraillage est résumé dans le tableau suivant :

Localisat	ion	A_{adop}	$\sigma_{bc} \leq \overline{\sigma_{bc}}$ (MPa)	Obs	$\sigma_{st} \leq \overline{\sigma_{st}}$ (MPa)	Obs
Travée	x-x	5.65	6.016< 15	vérifiée	123.60< 201.63	vérifiée

Tableau. V. 17 résultats de vérifications après augmentation du ferraillage

• Vérification de l'effort tranchant

$$\tau_u \leq \bar{\tau} = 1.25MPa$$
.

NB: Les schémas de ferraillage seront exposés dans l'annexe n° 10

Conclusion générale

Ce projet était l'occasion idéale d'exploitation de nos connaissances acquise durant notre parcourt universitaire, et d'approfondir nos connaissances, non seulement dans les calculs théorique, ainsi que en outils informatique (logiciels ETABS, AUTOCAD ...)

D'autre part cette étude nous à permis d'arriver à certaines conclusion :

- ✓ La disposition des voiles en respectant l'architectural du bâtiment, est souvent un obstacle majeur pour l'ingénieur de génie civil, la bonne disposition de ces derniers influe sur le comportement dynamique de la structure face aux sollicitations dynamique, c'est pour cela il faut toujours choisir la bonne disposition des voiles en prenant compte l'aspect architectural et le bon comportement de la structure
- ✓ Dans l'étude des éléments porteurs, on a constaté que les poteaux sont ferraillés avec le minimum du RPA99, cela est dû au surdimensionnement, et que le RPA99 valorise la sécurité avant l'économie.
- ✓ Les grandes travées d'une structure et la hauteur importante de quelque étages influe sur le comportement de la structure, elle nécessite une bonne disposition de voile et des sections un peut importante des éléments structuraux afin de minimiser ca souplesses et de régulariser son comportement.

Bibliographie

- RPA 99 version 2003: « Règles Parasismiques Algériennes », Edition CGS,
 Version 2003.
- **BAEL91 modifié 99** ; Règle technique de conception et de calcul des ouvrages et de constructions en béton armé suivant la méthode des états limites.
- **C.B.A93**: Règles de conception et de calcul des structures en béton armé.
- **DTR B.C.2.2**: Document technique règlementaire (Charges permanentes et surcharges d'exploitation. Edition CGS, 1989).
- **BELAZOUGUI**, Calcul des ouvrages en béton armé.

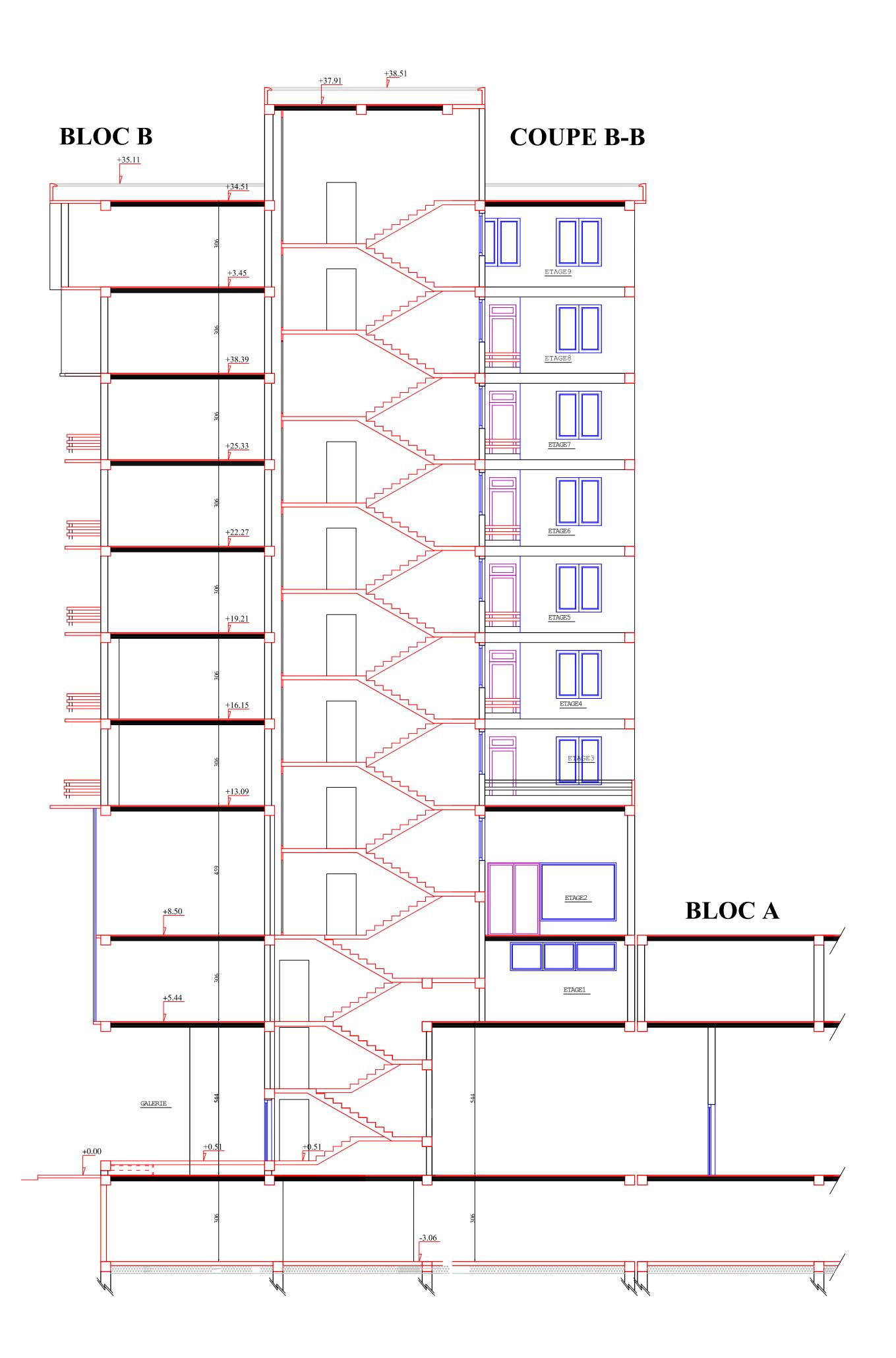
Autres documents consultés :

Notes de cours et TD de module béton armé.

Mémoires de fin d'études.

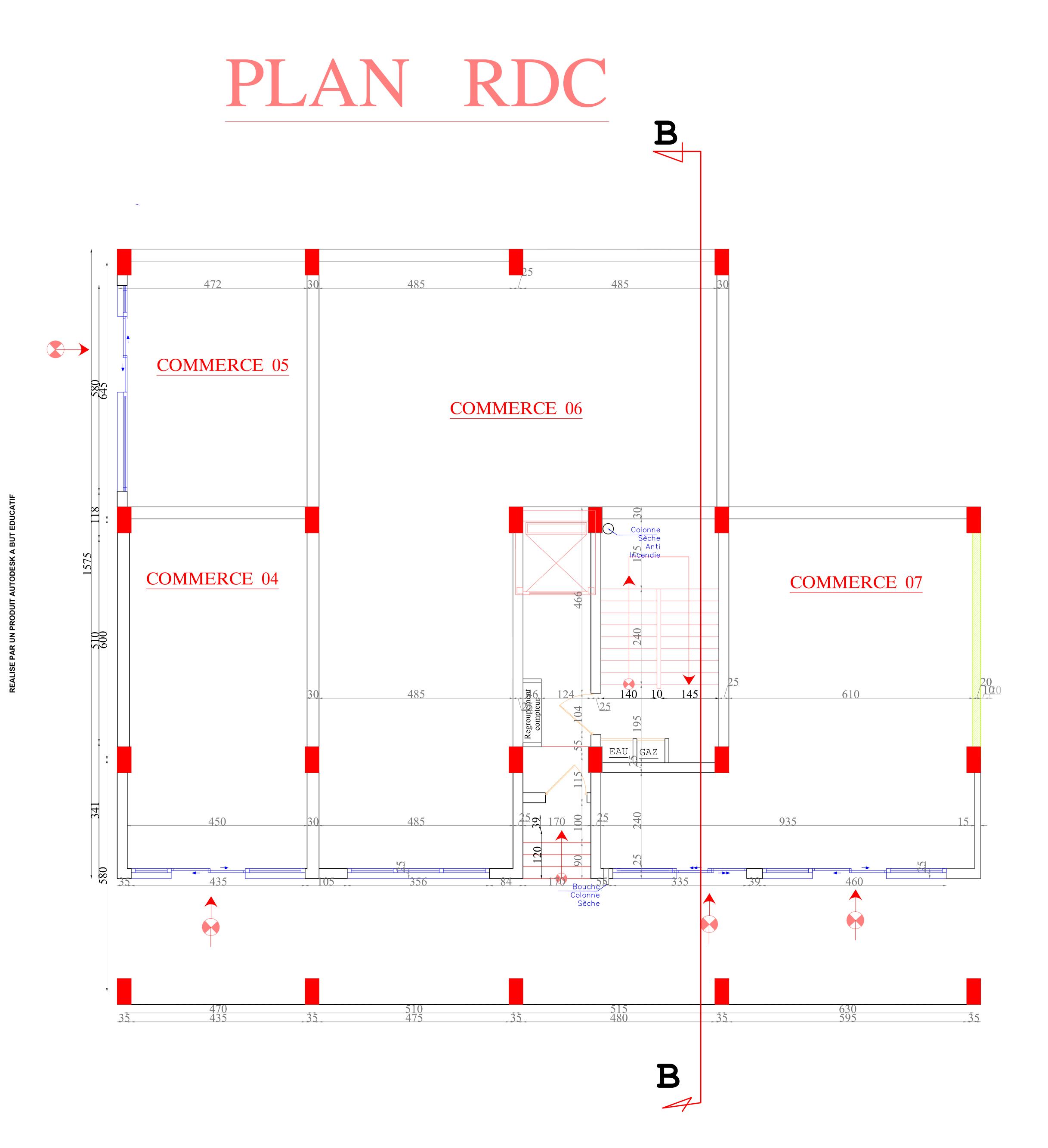
Les sites web consultés :

www.scribd.com

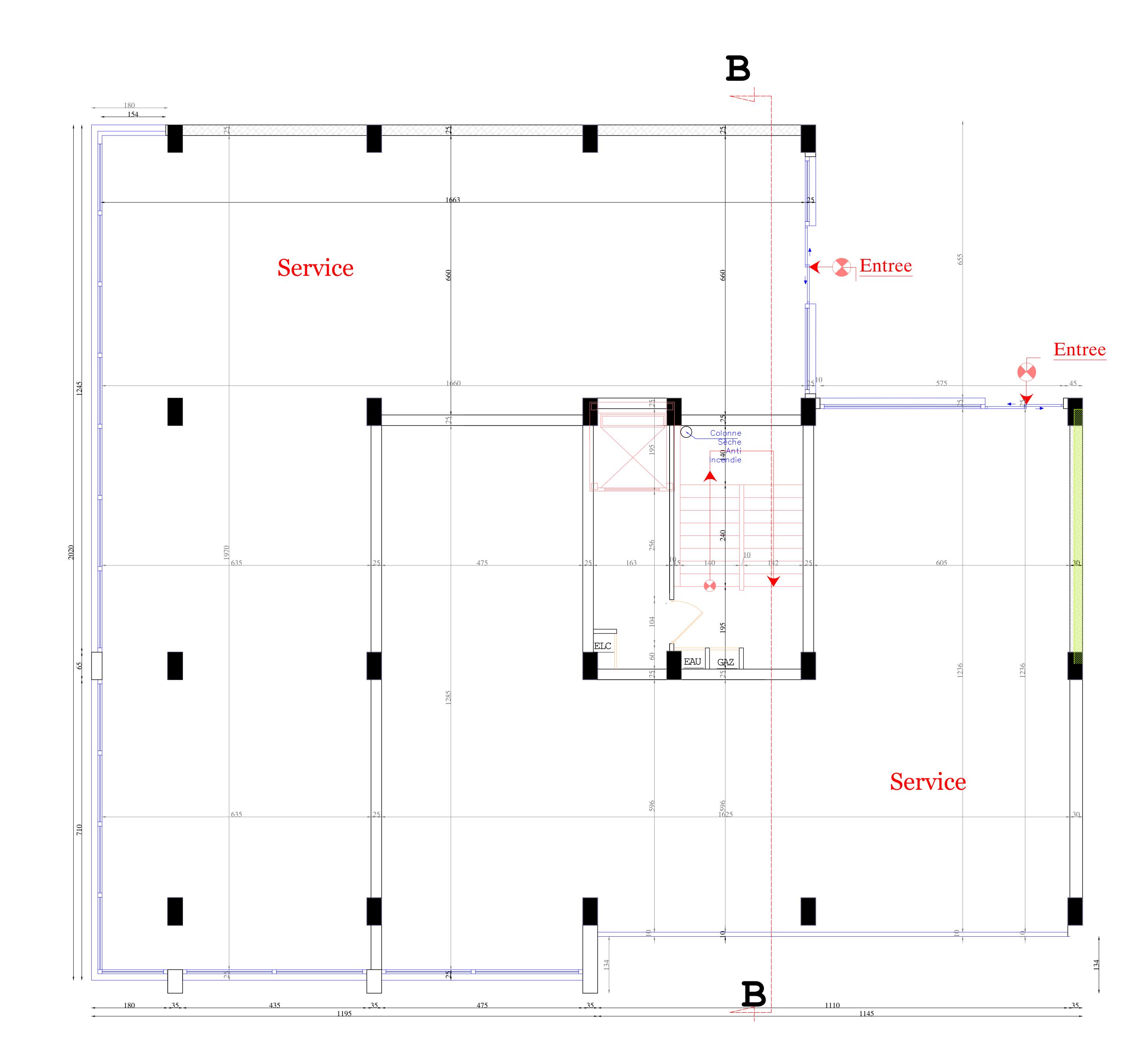

https://www.technique-ingénieur.fr

www.Civil Mania.com

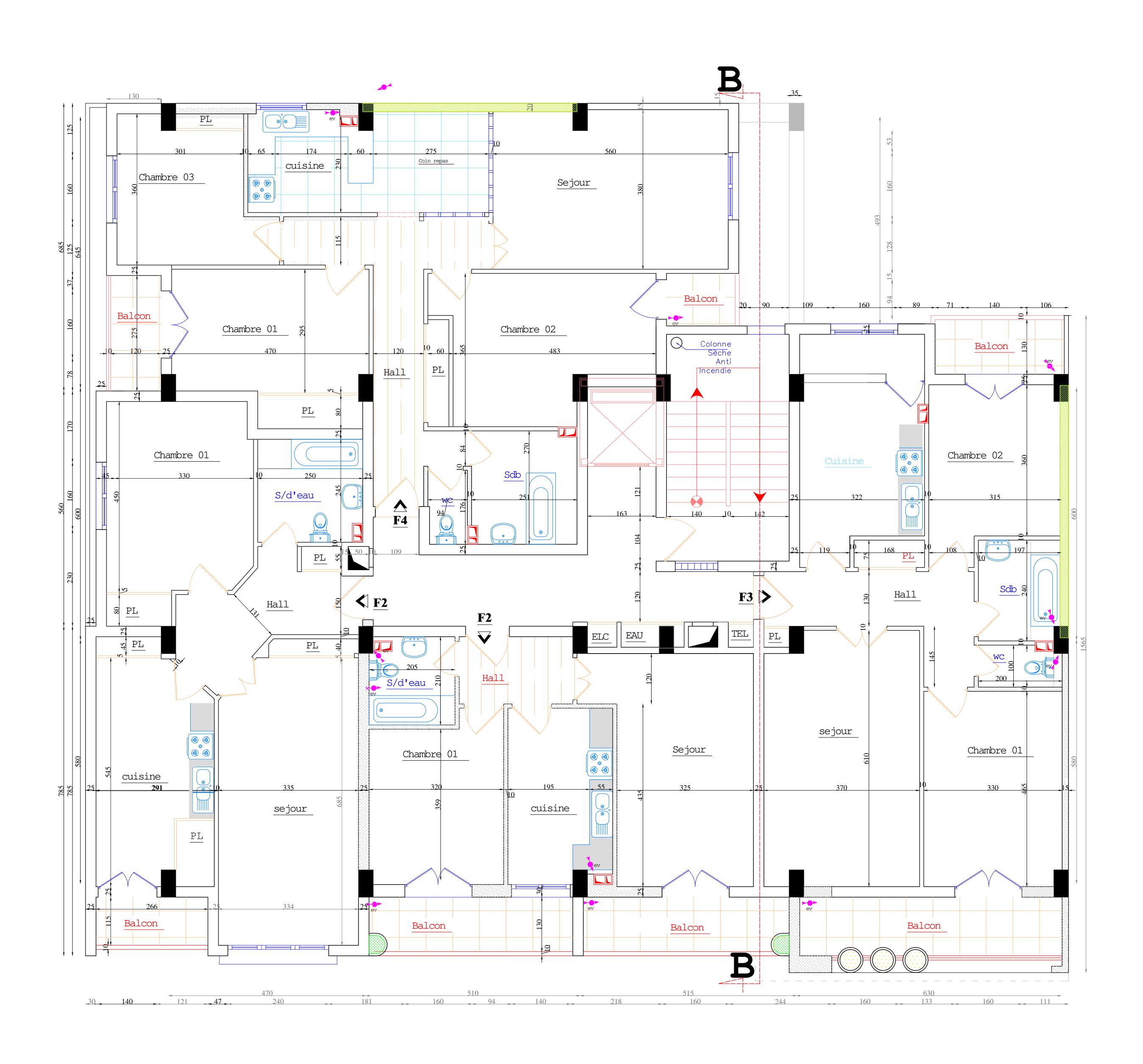
Amnexes

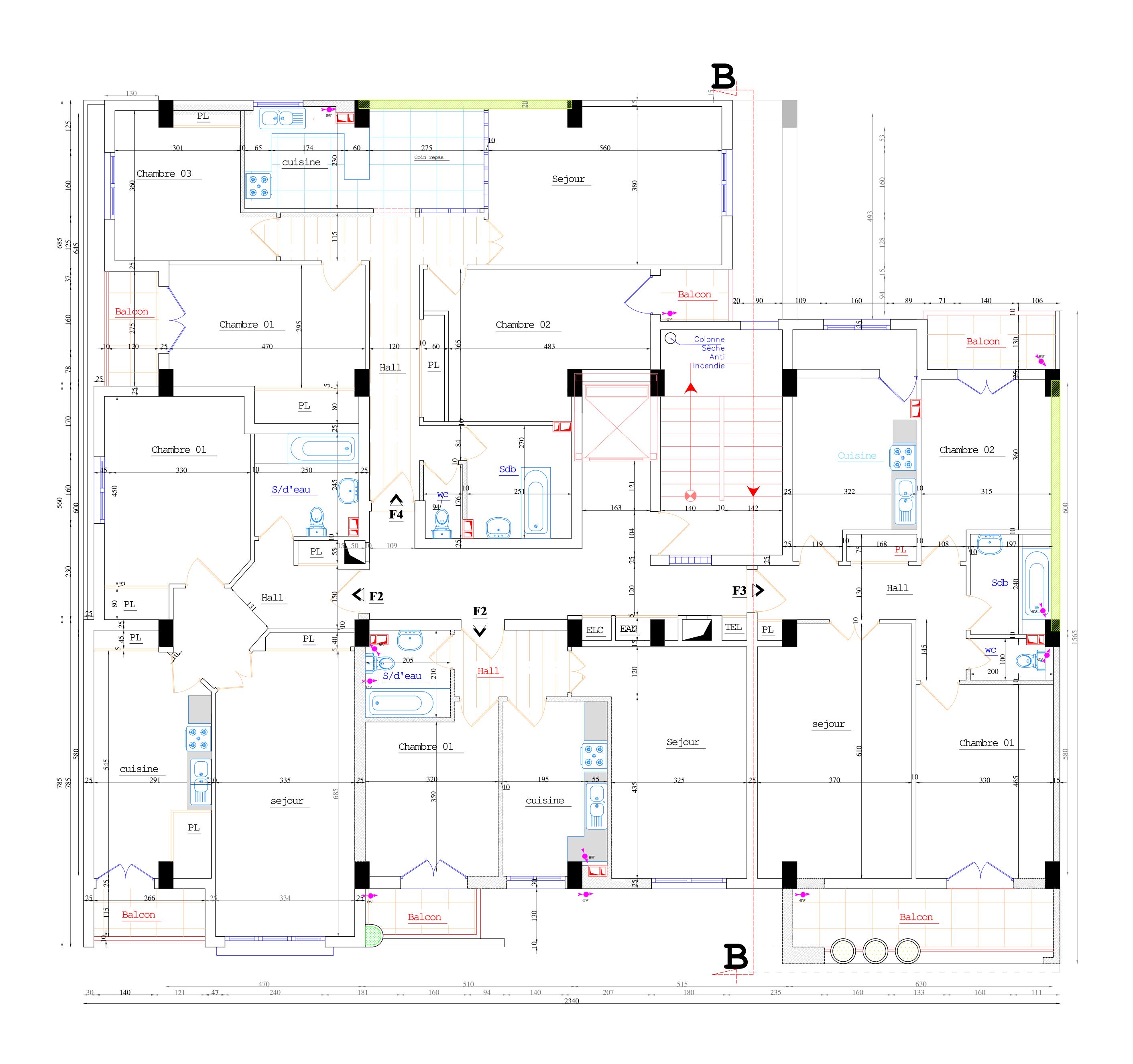

Ammexe: 01

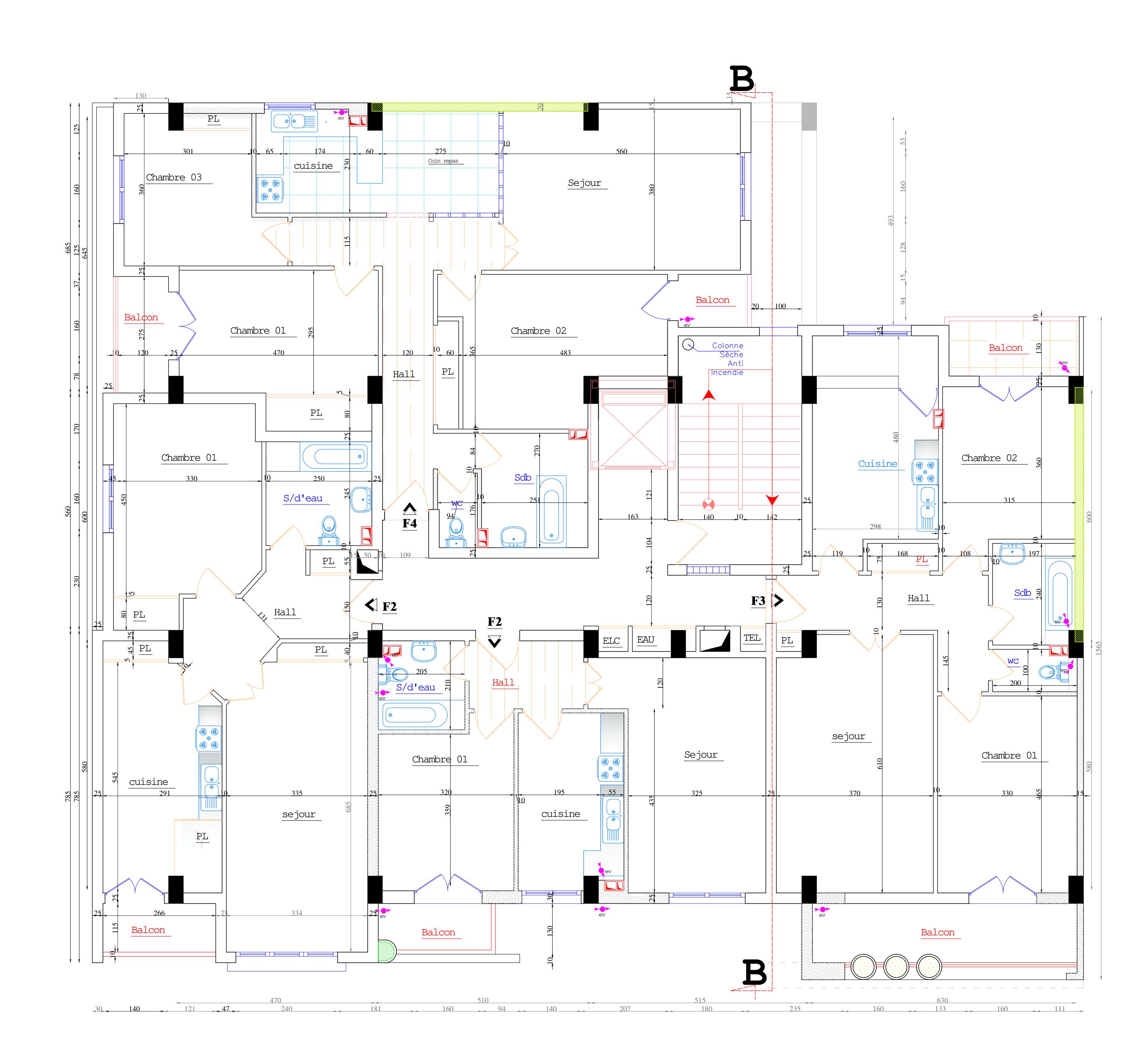
Plans Architectures



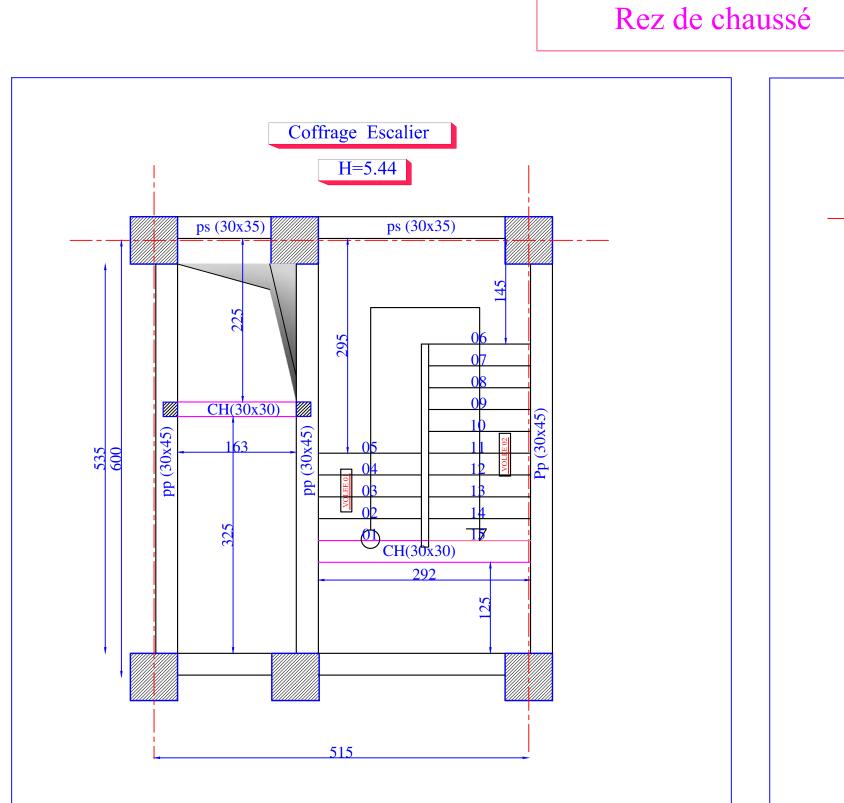
REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF

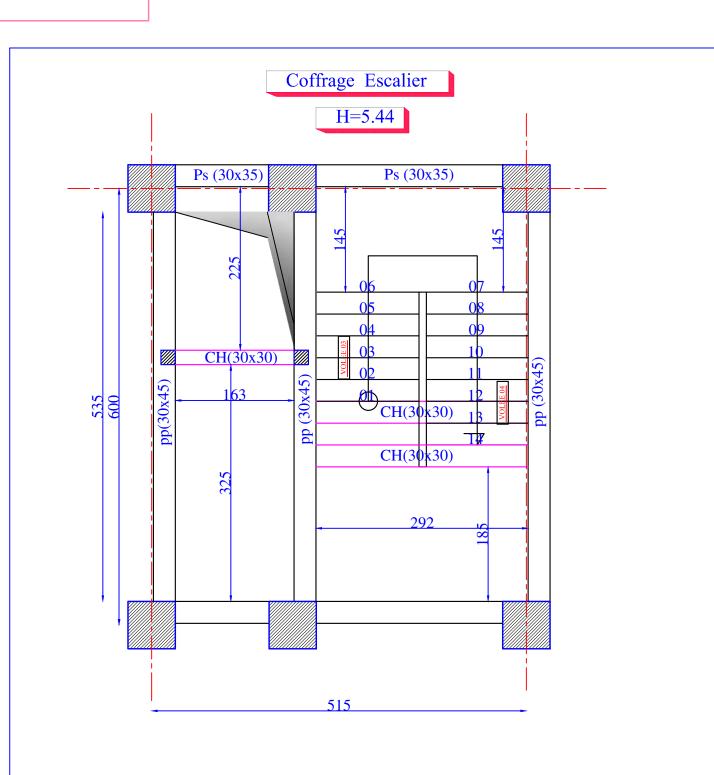

l'annexe n°02

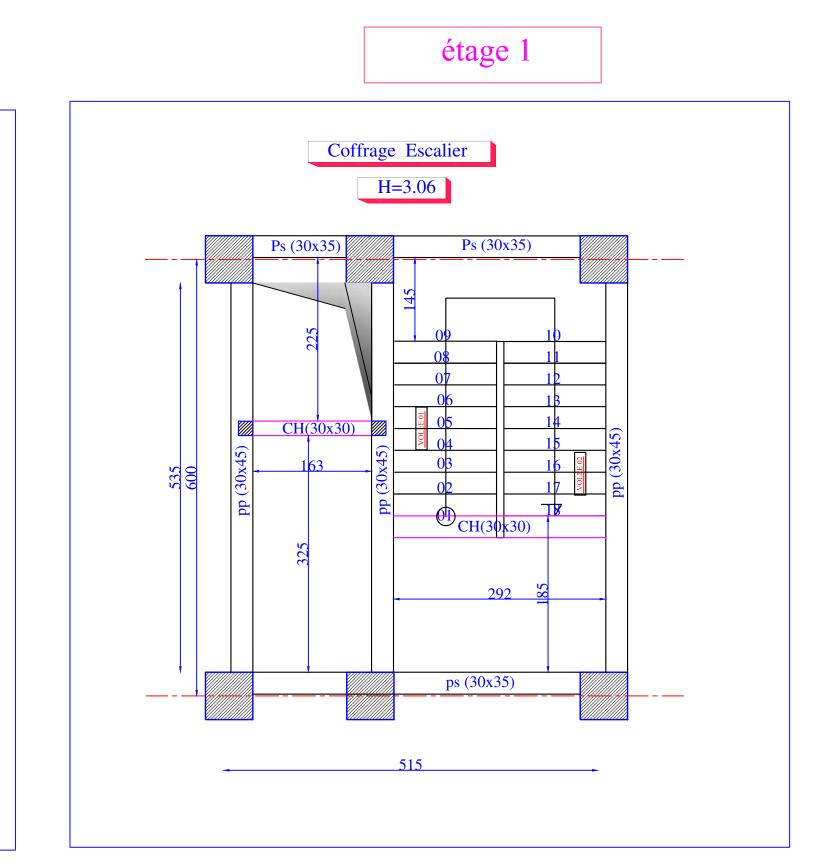

PLAN ETAGE 01et 02

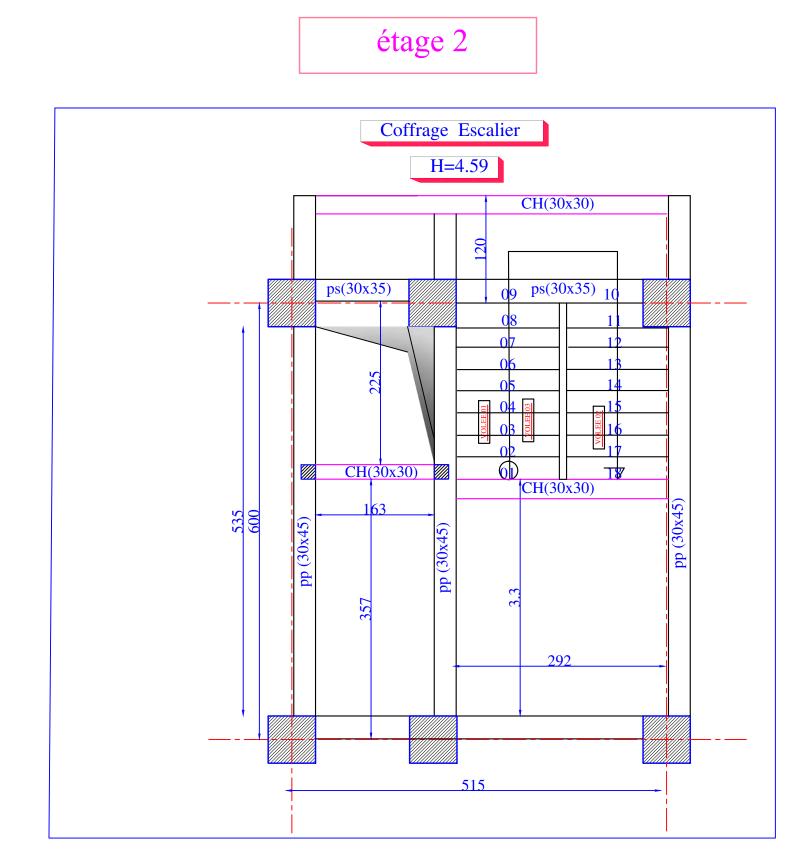

PLAN D'ETAGE 03

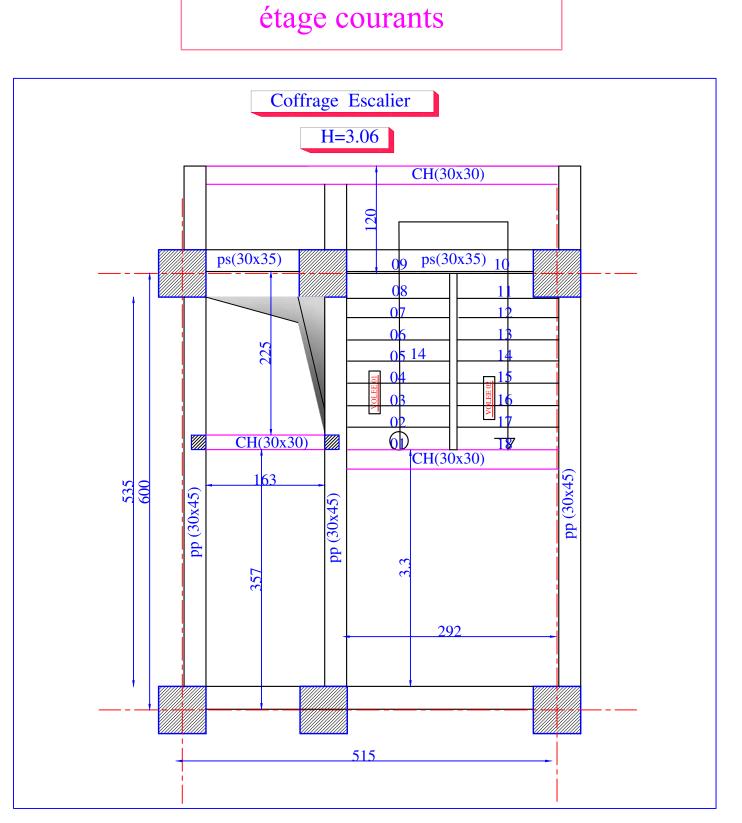
PLAN D'ETAGE 04 a 06

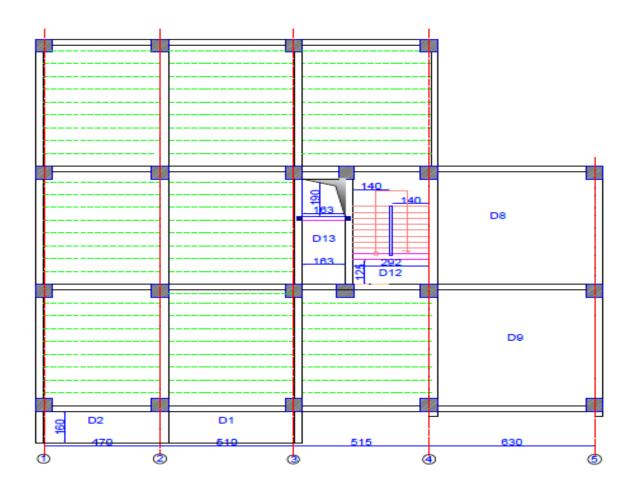


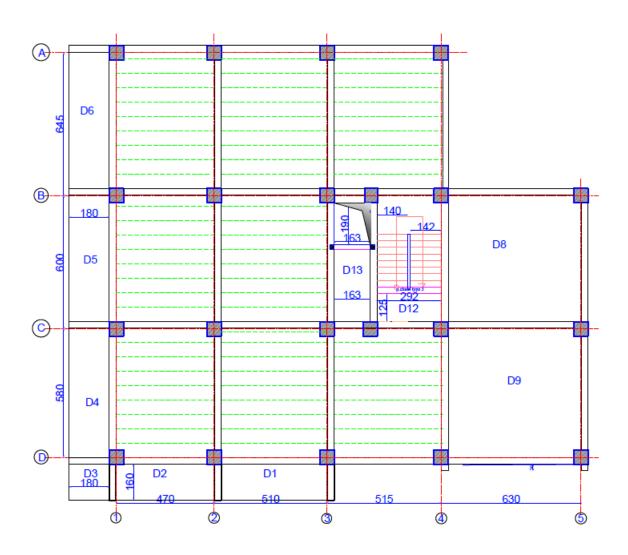

PLAN D'ETAGE 07 à 09



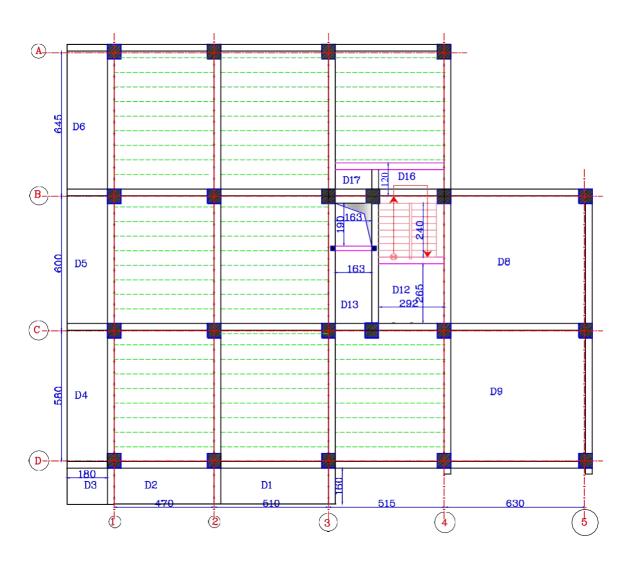

Ammexe: 02

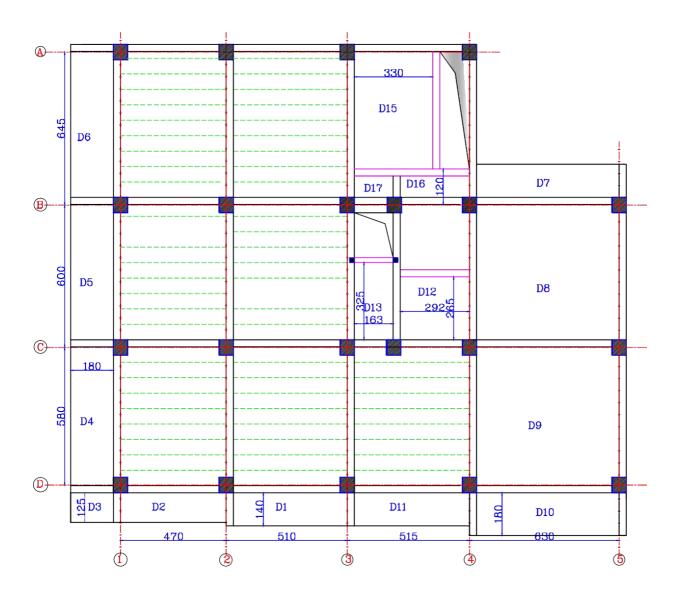

Vue en plan de la cage d'escalier

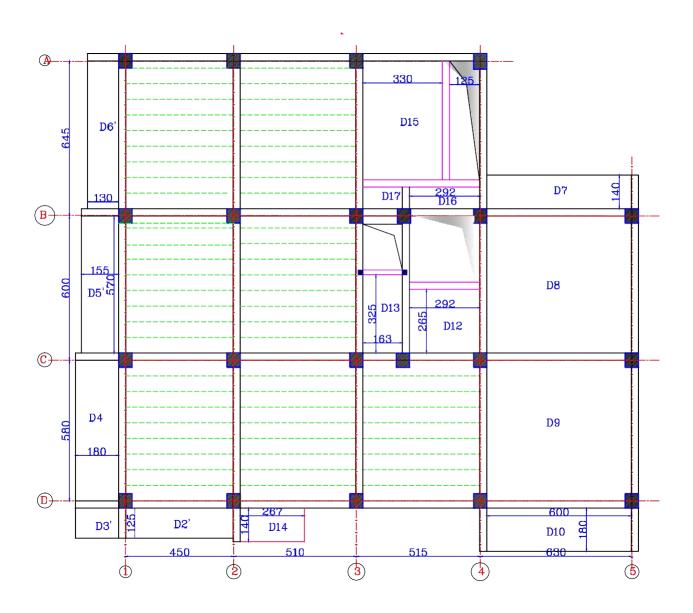


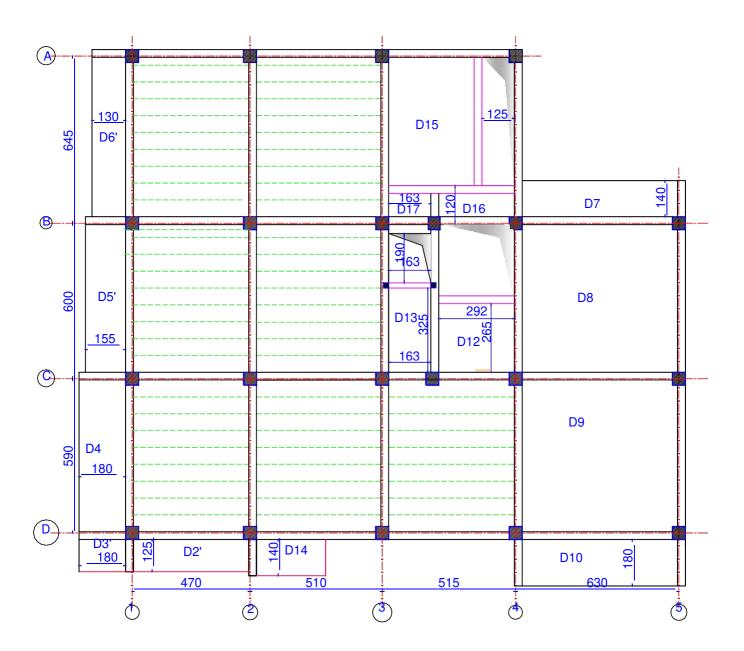

Ammexe: 03

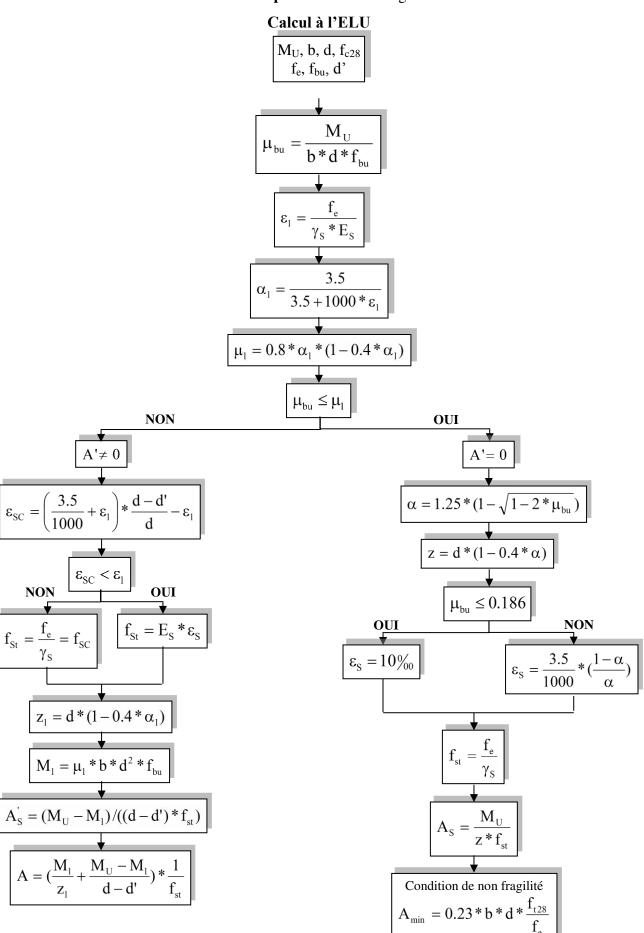
Plans de coffrage


Plan RDC


Plan étage 1


Plan étage 2


Plan étage 3


Plan étage 4,5 et 6

Plan étage 7 à 9

Flexion simple: Section rectangulaire

Annexe: 05

Dalles rectangulaires uniformément chargées articulées sur leur contour

$\alpha = \frac{L_X}{L_Y}$	ELU	v = 0	ELS $v = 0.2$			
$L_{_{ m Y}}$	μ_{x}	$\mu_{\rm v}$	μ _x	$\mu_{\rm v}$		
0.40	0.1101	0.2500	0.0121	0.2854		
0.41	0.1088	0.2500	0.1110	0.2924		
0.42	0.1075	0.2500	0.1098	0.3000		
0.43	0.1062	0.2500	0.1087	0.3077		
0.44	0.1049	0.2500	0.1075	0.3155		
0.45	0.1036	0.2500	0.1063	0.3234		
0.46	0.1022	0.2500	0.1051	0.3319		
0.47	0.1008	0.2500	0.1038	0.3402		
0.48	0.0994	0.2500	0.1026	0.3491		
0.49	0.0980	0.2500	0.1013	0.3580		
0.50	0.0966	0.2500	0.1000	0.3671		
0.51	0.0951	0.2500	0.0987	0.3758		
0.52	0.0937	0.2500	0.0974	0.3853		
0.53	0.0922	0.2500	0.0961	0.3949		
0.54	0.0908	0.2500	0.0948	0.4050		
0.55	0.0894	0.2500	0.0936	0.4150		
0.56	0.0880	0.2500	0.0923	0.4254		
0.57	0.0865	0.2582	0.0910	0.4357		
0.58	0.0851	0.2703	0.0897	0.4456		
0.59	0.0836	0.2822	0.0884	0.4565		
0.60	0.0822	0.2948	0.0870	0.4672		
0.61	0.0808	0.3075	0.0857	0.4781		
0.62	0.0794	0.3205	0.0844	0.4892		
0.63	0.0779	0.3338	0.0831	0.5004		
0.64 0.65 0.66 0.67 0.68 0.69	0.0765 0.0751 0.0737 0.0723 0.0710 0.0697	0.3472 0.3613 0.3753 0.3895 0.4034 0.4181	0.0819 0.0805 0.0792 0.0780 0.0767 0.0755 0.0743	0.5117 0.5235 0.5351 0.5469 0.5584 0.5704		
0.70	0.0684	0.4320	0.0743	0.5817		
0.71	0.0671	0.4471	0.0731	0.5940		
0.72	0.0658	0.4624	0.0719	0.6063		
0.73	0.0646	0.4780	0.0708	0.6188		
0.74	0.0633	0.4938	0.0696	0.6315		
0.75	0.0621	0.5105	0.0684	0.6447		
0.76 0.77 0.78 0.79 0.80	0.0608 0.0596 0.0584 0.0573 0.0561	0.5274 0.5440 0.5608 0.5786 0.5959	0.0672 0.0661 0.0650 0.0639 0.0628	0.6580 0.6710 0.6841 0.6978 0.7111 0.7246		
0.82 0.83 0.84 0.85	0.0539 0.0528 0.0517 0.0506 0.0496	0.6313 0.6494 0.6678 0.6864 0.7052	0.0607 0.0956 0.0586 0.0576 0.0566	0.7381 0.7518 0.7655 0.7794 0.7932		
0.87	0.0486	0.7244	0.0556	0.8074		
0.88	0.0476	0.7438	0.0546	0.8216		
0.89	0.0466	0.7635	0.0537	0.8358		
0.90	0.0456	0.7834	0.0528	0.8502		
0.91	0.0447	0.8036	0.0518	0.8646		
0.92	0.0437	0.8251	0.0509	0.8799		
0.92	0.0437	0.8251	0.0509	0.8739		
0.93	0.0428	0.8450	0.0500	0.8939		
0.94	0.0419	0.8661	0.0491	0.9087		
0.95	0.0410	0.8875	0.0483	0.9236		
0.96	0.0401	0.9092	0.0474	0.9385		
0.97	0.0392	0.9322	0.4065	0.9543		
0.98	0.0384	0.9545	0.0457	0.9694		
0.99	0.0376	0.9771	0.0449	0.9847		
1.00	0.0368	1.0000	0.0441	0.1000		

Table de PIGEAUD

M1 et M2 pour une charge concentrique P = 1 s'exerçant sur une surface réduite u * v au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension Lx *

Ly Avec Lx < Ly. $\rho = 0.5$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.300 0.247 0.212 0.188 0.168 0.152 0.137 0.123 0.112 0.102	0.270 0.245 0.219 0.193 0.147 0.156 0.142 0.128 0.116 0.105 0.096	0.222 0.210 0.194 0.176 0.160 0.145 0132 0.119 0.108 0.098 0.090	0.189 0.183 0.172 0.160 0.147 0.134 0.123 0.111 0.100 0.092 0.083	0.167 0.164 0.156 0.143 0.135 0.124 0.114 0.103 0.093 0.086 0.078	0.150 0.147 0.140 0.133 0.124 0.114 0.105 0.096 0.087 0.079 0.072	0.134 0.132 0.128 0.122 0.114 0.105 0.098 0.088 0.081 0.073 0.066	0.122 0.120 0.116 0.110 0.104 0.097 0.090 0.082 0.074 0.067 0.062	0.111 0.109 0.106 0.102 0.096 0.089 0.083 0.075 0.068 0.063 0.057	0.101 0.099 0.097 0.093 0.088 0.081 0.075 0.068 0.063 0.058	0.092 0.090 0.088 0.085 0.080 0.075 0.068 0.064 0.058 0.053 0.048
Valeur de M2	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.153 0.088 0.068 0.050 0.038 0.029 0.024 0.020 0.017 0.014	0.270 0.150 0.097 0.068 0.049 0.038 0.029 0.024 0.019 0.017	0.222 0.140 0.094 0.067 0.048 0.037 0.028 0.023 0.019 0.016 0.013	0.194 0.131 0.090 0.065 0.047 0.036 0.028 0.023 0.018 0.016 0.013	0.172 0.121 0.087 0.062 0.046 0.035 0.027 0.023 0.018 0.015	0.154 0.121 0.082 0.059 0.044 0.034 0.027 0.022 0.017 0.014 0.012	0.141 0.104 0.077 0.057 0.042 0.033 0.026 0.020 0.016 0.014	0.126 0.097 0.072 0.053 0.039 0.030 0.024 0.019 0.015 0.013	0.113 0.089 0.066 0.048 0.037 0.028 0.023 0.018 0.014 0.012	0.103 0.080 0.060 0.045 0.034 0.027 0.020 0.017 0.013 0.011	0.093 0.073 0.055 0.040 0.031 0.024 0.019 0.015 0.013 0.010 0.009

Tableau des Armatures (en cm²)

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.7	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

Formules des vérifications des contraintes dans les poteaux

On doit vérifier que : $\sigma_{bc} \leq \overline{\sigma_{bc}}$

✓ Pour une section entièrement comprimé (SEC) :

$$\sigma_{bc} = \frac{N_{ser}}{S} + \frac{M_{ser}}{I} \times v \le \frac{-}{\sigma_{bc}} = 0.6 \times f_{c28}$$

$$S = b \times h + 15(A + A')$$

$$I = \frac{b}{3} \times (v^3 + v^{3}) + 15 \times A \times (d + v)^2 + 15 \times A' \times (v - d')^2$$

$$v = \frac{\frac{b \times h^2}{2} + 15 \times (A \times d + A' \times d')}{b \times h + 15 \times (A + A')}$$

$$v' = h - v$$

✓ Pour une section pareillement comprimé (SPC) :

$$e_G = \frac{M_{ser}}{N_{ser}}$$

$$Y_C^3 + PY_C + q = 0$$

$$\begin{cases} P = -3C^2 - 90\frac{A'}{b}(c - d') + 90\frac{A}{b}(d - c) \\ q = -2C^3 - 90\frac{A'}{b}(c - d')^2 + 90\frac{A}{b}(d - c)^2 \end{cases}$$

$$\Delta = q^2 + \frac{4p^3}{27}$$

$$\begin{cases} t = 0.5(\sqrt{\Delta} - q) \\ z = t^{\frac{1}{3}} \end{cases}$$

$$\mu_{t} = \frac{b}{2} y^{2} + 15 [A'(y-d') - A(d-y)]$$

Ammexe: 09

Rapport d'étude du sol

Stabilité des parois après terrassement (I.M N°004 du 07/09/2017)

Il est question dans ce projet de réaliser des immeubles avec sous sol, avec un fond de fouille à -4 m .00 par rapport à la surface du terrain. On aura par conséquent, des parois de 4 m de hauteurs. Par ailleurs et selon les résultats des essais effectués, la couche superficielle allant jusqu'à 3 m d'épaisseur environ, est de faible cohésion (C < 0.3 bar et ϕ < 20 $^\circ$) qu'il la rend très vulnérable et altérable.

A cet effet, il est recommandé de procéder au confortement des parois juste à la fin des terrassements et accélérer la mise en place du drainage et des fondations.

L'étaiement, le terrassement par petites parties ou encore, si la surface du terrain le permet, réaliser des terrassements en plusieurs plans successifs (en gradins). Si non, un blindage provisoire des parois est préconisé.

CONCLUSION ET RECOMMANDATIONS

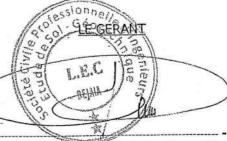
Le terrain de la parcelle étudiée pour recevoir deux immeubles en R+9 et R+11 en extension de la promotion immobilière « Résidence Zhira » sise à la cité EDIMCO (en face de l'hôtel Zephyr) dans la ville de Béjaia, au profit de la Sarl résidence Zhira, est constitué de sols de moyenne portance.

Le terrain est plat, de constitution limoneuse sableuse graveleuse peu à moyennement compacte en surface, à argileuse marneuse sableuse compacte avec passage de galets et gros sable, en profondeur.

Les essais pénétromètriques dynamique et les essais pressiométriques ont révélé un sous sol hétérogène visà-vis de sa résistance, qui est globalement faible au niveau des trois premiers mètres et moyenne à bonne dans la couche intermédiaire entre -3^m et -8^m. Au-delà de 8^m, les sols deviennent de plus en plus compacts.

Par rapport à leur aspect géotechnique, les sols de fondation sont caractérisés comme suite :

- La couche superficielle de remblais récents (faible compacité) est de 3^m.20 d'épaisseur en général.
- Le taux de travail pour un fond de la fouille à -4^m est de $\sigma_{adm}=1.38$ bars.
- Les caractéristiques mécaniques moyennes des sols à partir de -4^m : γ_h= 19.8 kN/m³,φ= 20° et C= 0.3 bar.
- Les tassements sont évalués à 8cm au max sous un radier.
- Des eaux souterraines non agressives sont constatées au 4^{éme} mètre de profondeur (01/2017).
- Le site est classé en catégorie S4.
- Aucune substance agressive vis-à-vis du béton n'est constatée dans le sous-sol.

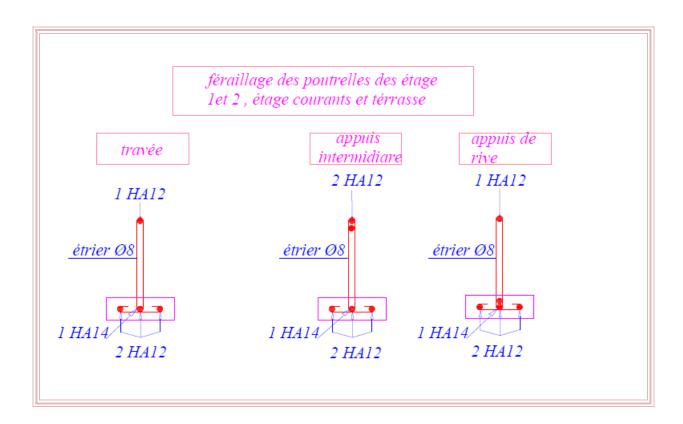

Par ailleurs, il est préconisé :

- ✓ L'infra doit être impérativement munie d'un système de cuvelage (drainage + étanchéité) et réalisé
 avec ún béton dosé à 400 kg/m³.
- ✓ Le radier doit être posé sur un lit en pierres (soigneusement entreposées) de 30 à 40 cm d'épaisseur.
- ✓ Ne pas laisser les fouilles trop longtemps ouvertes.

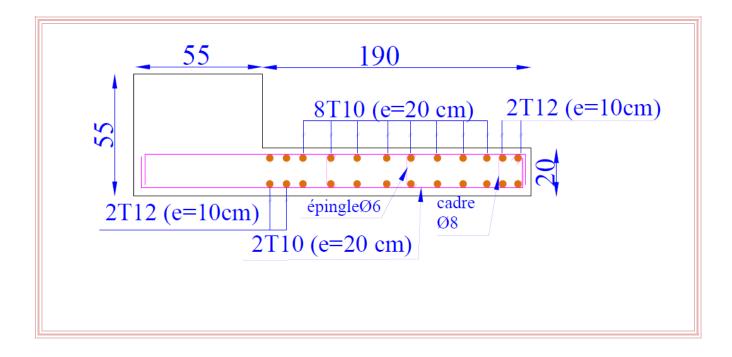
L'ingénieur chargé de l'étude

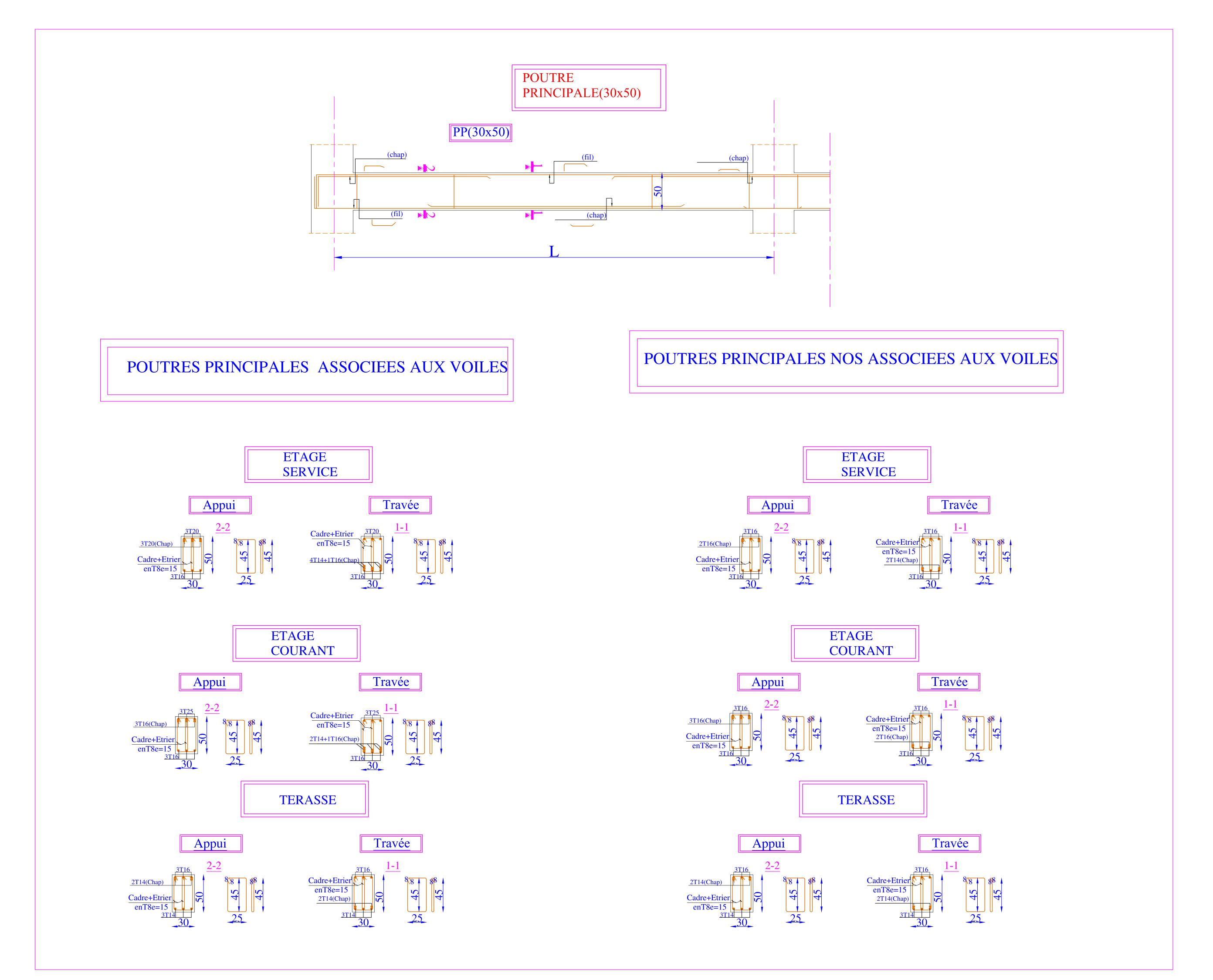
Ingénieur Charge D'études

SCP ILEC BEJAIA

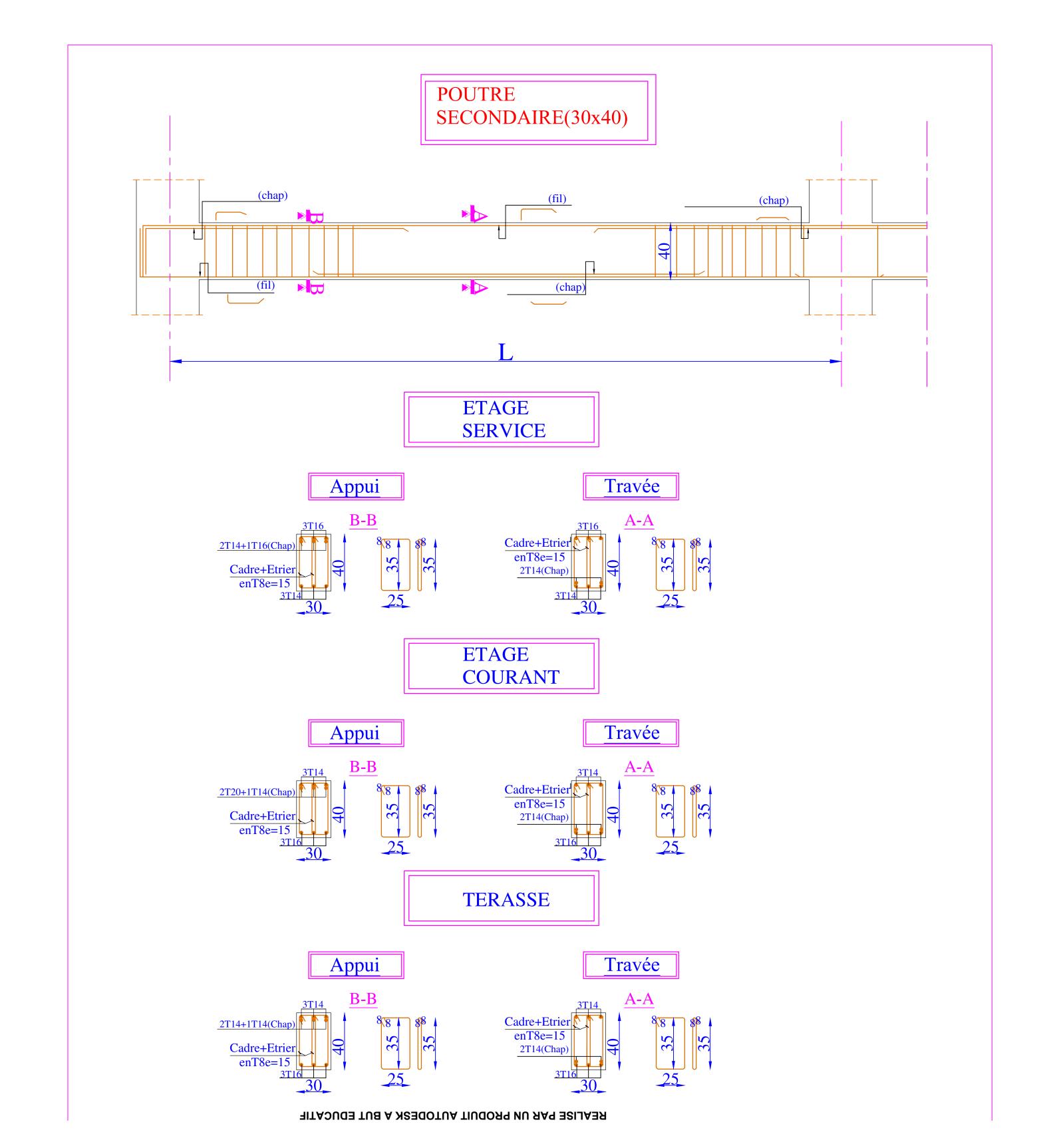


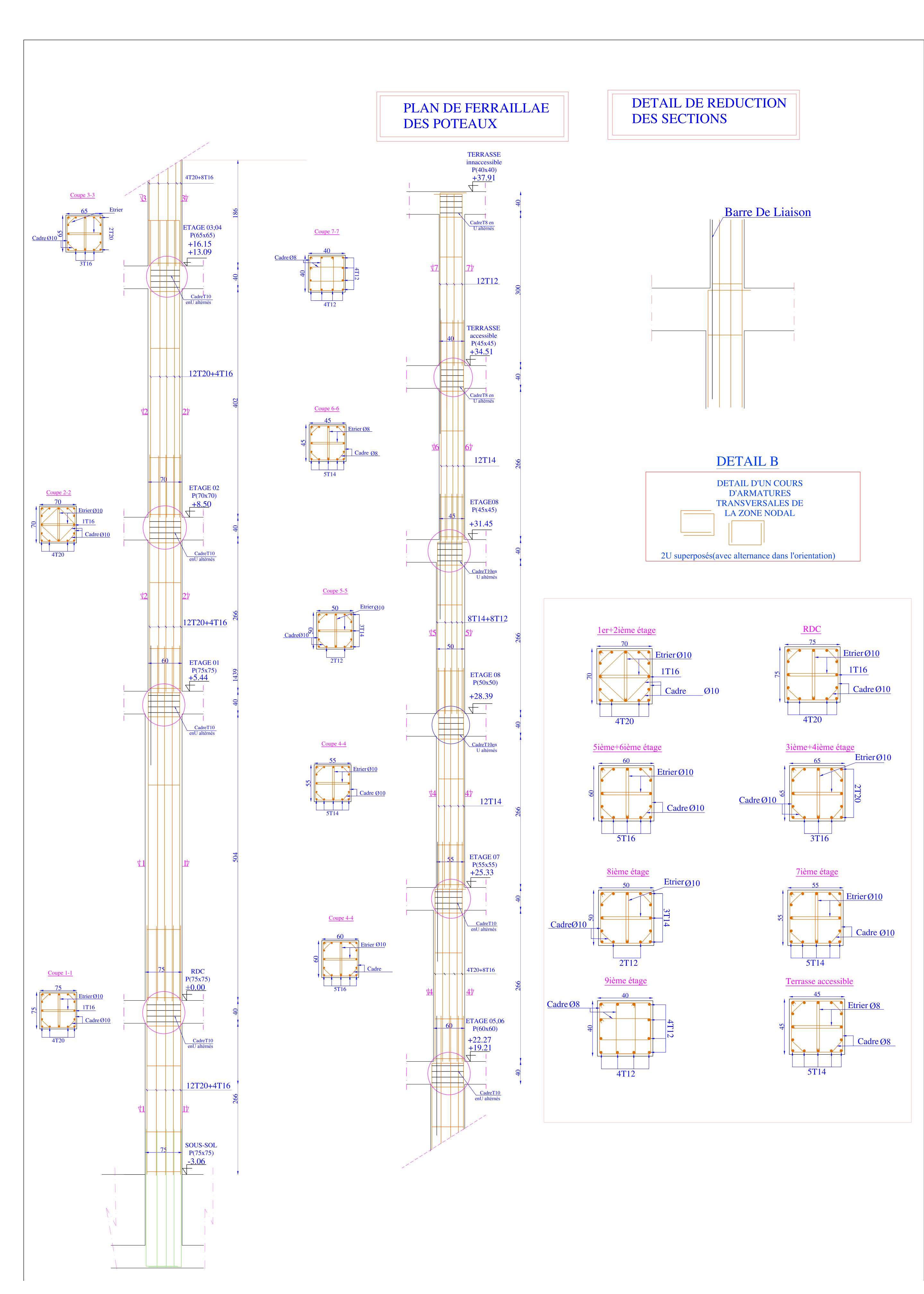
i de Bejaia

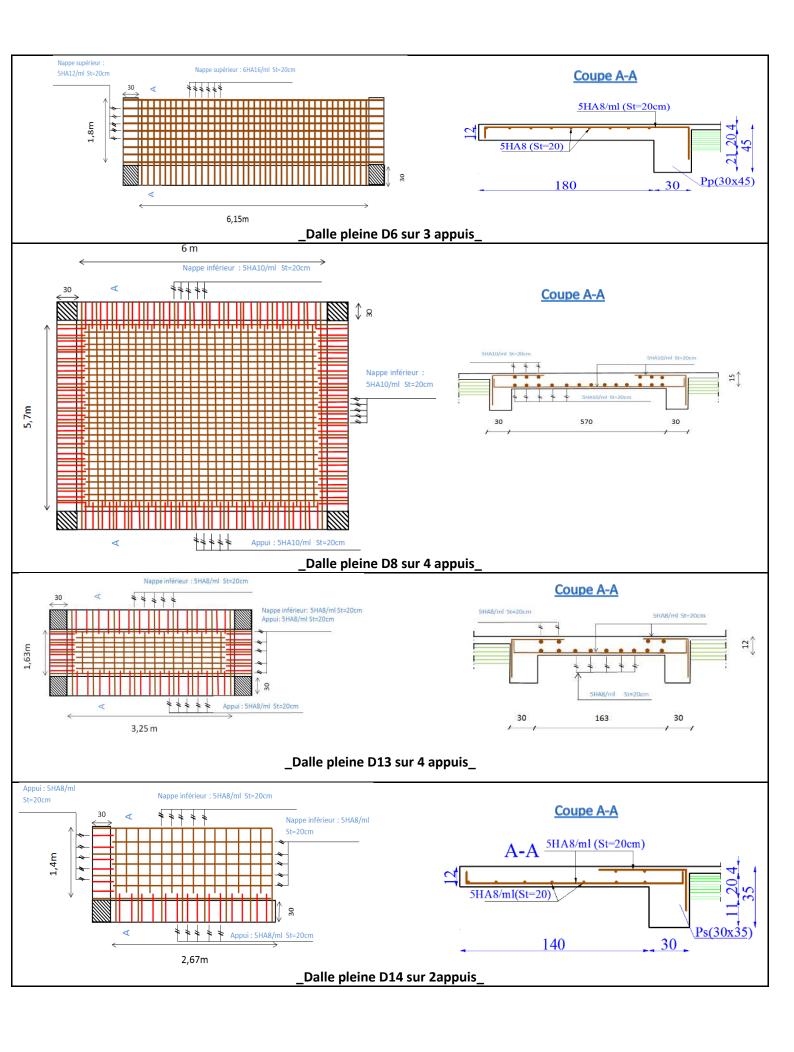

- 9 -


Ammexe: 10

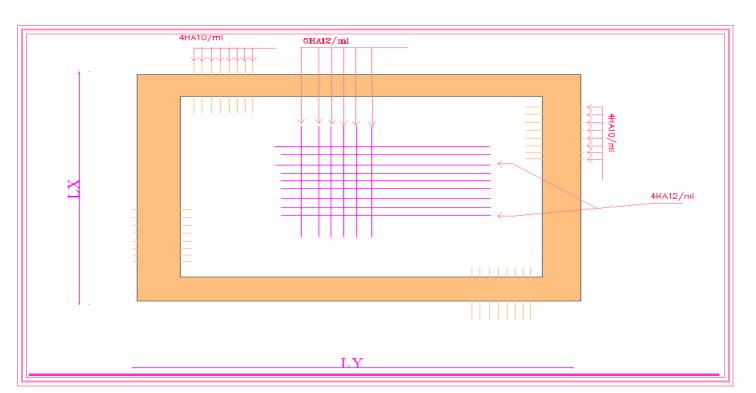
Plans de ferraillage




Ferraillage du voile v_{x1} du $7^{\text{\'eme}}$ étage

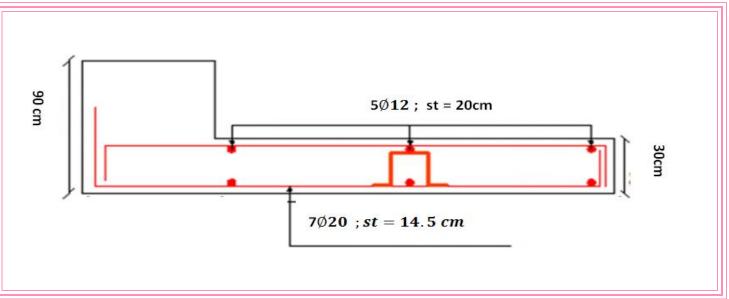


REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF




Ferraillage du radier

féraillage du radier 8HA16/ml st=12.5cm 9HA20/ml st=11cm 9HA20/ml st=12.5cm 7HA20/ml st=14.2cm


Ferraillage du voile périphérique

Ferraillage de la nervure sens Y-Y

Ferraillage du débord

