Reference:

UNIVERSITY OF MOHAMED BOUDIAF - M’SILA

FACULTY OF MATHEMATICS AND INFORMATICS
Department of Computer Science

Thesis

Submitted in partial fulfilment of the requirements for the degree of
DOCTORATE 3" Cycle in Computer Science
Option: Advanced Information Systems

By:
Hichem DEBBI
Subject

Systems Analysis using Model Checking with Causality

Presented Publicly: 14/03/2015, to the jury:

B. Bouderah Prof., University of M'sila President
M. Bourahla Dr., University of M'sila Reporter

M. Ahmed-Nacer Prof., Univeristy of USTHB Examiner
A. Bilami Prof., University of Batna Examiner
D. Mihoubi Prof., University of M'sila Examiner

Academic Year: 2014/2015.

I would like to dedicate this thesis to the soul of my father, and my mother who really

encouraged me to be here today; the person who always gave me hope.

Acknowledgements

First, my thanks go to my supervisor, Dr. Mustapha Bourahla for his ultimate support. He
gave me the opportunity to learn so much about the domain of formal methods and formal
verification. Thanks to him, I got much experience about a domain that I investigated and
discovered for the first time. The thanks also go to the members of the jury, who give me
the honor to evaluate my work. I would like first to thank Pr. Brahim Bouderah for being
the president of this jury, and also the rest of the members of the jury, beginning by Pr.
Mohamed Ahmed-Nacer, Pr. Azeddine Bilami and finally Pr. Douadi Mihoubi.

I would like also to thank my colleagues, especially Abdallah Arioua and Bilal Lounnas.
Special thanks go to Abdallah Arioua for his valuable advises and concerns. My thanks also
go to Pr. Stefan Leue from Konstanz University, for hosting me as an intern in his group, and
I would like also to thank all the members of his group. I learned so much from them, and
thanks to them I gained a good experience in my research field that helped me to complete
my thesis. I would like to thank another person who inspired me as well; this person is
Marly Roncken from Portland State University.

Finally, I’'m very grateful for my family (mother, brothers and sisters) for their unlimited
motivation and support. Without their help and support, I would never have this educational

degree. Special thanks go to my brother Ali for his guidance and help with many issues.

uaidla

0o Ae sena allaill £3 gl ellae) | Adail) daua (e il aadis)5 ed V)) e aaly s z3sall (and
G855 are Alla (8 aliae Jle 2l g e 50l a3l 038 Juady Uadll jlue Jiay oliae Jlie oLl oy ¢ ailiadl)
adsa.aj\rf;k.\n@m}d:\ujua;ﬂ@ea\}é&.\ésCduﬂ\wés;ﬂ\edal.‘gc:ﬂ:\m&\

Gand, LSS sin S she Jani il Aadai¥) e giaill S il 23 sal 0ielS i Y] g3 gaill Gand ela
Sy 4dld L 5 llain) dalall 3l s Jlaia¥) SIS o) L il Baaal) eyl 531 e dpaall Calh gy aiaY) 23 sl
e e el Ly eJain¥) dsie iSqiil Alla b, slanal) Adiall Y of 380 58 Alaia) dpealAll il 13 Lo s

Jall 8 LS, (oS Gl Lgoad MaiaV) 23 5aill (o 3inil) Jlae 8 Baliaal) AERY) A 5 Gage 43 dn 5 Y1 o2 8 ek

& e S 1 pils SV a5 O ag (Sl JEA (e a3l Jlaia¥) 3 sail) (B e(galiil) 23 gaill and

O 0S8 Aain¥) GSlaadl JEall o Lasead dladll agdl &S5 Y Laé 40l) 5 5 jpua daSlee Al @y aay , Julaill
Ladl) s Juabl agdl (5 55 0yl Adlaia¥) dSlaall Al Jidad (b c@llal y aegaday Jaia) 43l 5 Badeie <l e

Co | Al saliaal) ALY Jilas sa 5 Allaia¥) saliaall ALY 2l 5l ALeSa Gaga B pe J5Y Aa s,k e JlE

Aapal slime Jlie 2sas 8, Apad) Ay Hlan Gl analie alaaiuly AlldaY) duSledl A dpapiill Cllul) e 2l

S z3saill (e Alall iy ol a1 ST) andivaall da pEall callul) o3 0 55 ¢ dlaial g3 sai e @85 Y of ddlaiay)
Aladl il) (e el alasiinly U8l ads, Uaaldl) el

Alia OS5 a1 Gl gl 8 V) (e aaall 8 Al Gl 5o e paell J5l a3 ¢ a3 sall (o 83 8
an o) gl alaill ool 5 ASualion Jilais agh o Laclud Gl 4paSl) pulaill i) Maial 23 sai aldiud S) guas Liad
alaill Sl Qo) Gaail) any SISzl sV Gandll Lpeal a5 ae cLsY) i jul Bl 5 skl dadailll
P e zalaill Maia¥) Gandll daal (e s Gf Adliad) c¥laal o3g) Sy (S Jlebily Liia gkl 230 il
A) Glan¥) dallae il 5 uall & 3ad) Jilas ddliaadl) e ol e adib dlSa) 4l)

Abstract

Model checking is one of the most famous formal methods used for the verification of
finite-state systems. Given a system model and such specification which is a set of formal
proprieties, the model checker verifies whether or not the model meets the specification. In
case the specification is not satisfied, a counterexample is generated as an error trace.

Probabilistic model checking has appeared as an extension of model checking for analy-
sing systems that exhibit stochastic behaviour. Probabilistic model checking employs many
numerical algorithms to compute the probability of the satisfaction of given temporal prop-
erty, and thus it could determine whether a probabilistic property is satisfied or not given
such threshold. In case the probability threshold is violated, a counterexample is generated.

In this thesis, we show that the task of counterexamples generation in probabilistic model
checking has a quantitative aspect. As it is in conventional model checking, in probabilistic
model checking the generated counterexample should be small and indicative to be easy for
analysing. However, generating small and indicative counterexamples only is not enough
for understanding the error, especially that probabilistic counterexample consists of multiple
paths and it is probabilistic. Therefore, the analysis of probabilistic counterexamples is
inevitable to better understand the error.

This thesis addresses for the first time the complementary task of counterexample gen-
eration in probabilistic model checking, which is the counterexample analysis. We propose
many aided-diagnostic methods for probabilistic counterexamples based on notions related
to causality theory. These methods guide the user to the most relevant parts of the model
that led to the error. We evaluate our methods using many case studies.

In probabilistic model checking, several case studies in several domains have been ad-
dressed . In recent years there has been also a great attend to use probabilistic model check-
ing to analyse the dynamic and the performance of biological systems. With the growing
importance of probabilistic model checking as a formal framework for the verification and
quantitative analysis of probabilistic systems, we investigate this importance by showing its
applicability on two different domains, medical treatment analysis and probabilistic Com-

plex Event Processing (CEP).

Résumeé

Model checking est I'une des méthodes les plus utilisées pour la vérification des systemes finis. Etant
donné un modele d'un systeme et une telle spécification, qui est un ensemble de propriétés formelles,
le model checker (I'outil de vérification) vérifie si oui ou non le modéle satisfait la spécification. Dans
le cas ou la spécification n'est pas satisfaite, un contre-exemple est généré en tant que trace d'erreur.

Le probabilistic model checking est apparu comme une extension de model checking pour les
systémes qui présentent un comportement stochastique. Probabilistic model checking emploie de
nombreux algorithmes numériques pour calculer la probabilité de la satisfaction de la propriété
temporelle donnée, et donc pour déterminer si une propriété probabiliste est satisfait ou pas étant
donné un tel seuil de probabilite. Dans le cas ou le seuil de probabilité est violé, un contre-exemple est
géneré.

Dans cette these, nous montrons que la génération des contre-exemples dans le probabilistic model
checking a un aspect quantitatif. Comme le model checking classique, dans le probabilistic model
checking le contre-exemple généré devrait Etre significatif pour étre facile a analyser. Cependant, la
génération des contre-exemples indicatifs seulement n'est pas suffisante pour la compréhension de
I'erreur, d'autant que les contre-exemples probabilistes se composent de chemins multiples et sont tout
d'abord probabilistes. Par conséquent, I'analyse de contre-exemples probabilistes est nécessaire afin de
mieux comprendre I'erreur.

Cette thése aborde pour la premiére fois la tAche complémentaire de génération de contre-exemple,
qui est l'analyse de contre-exemple dans le probabilistic model checking. Nous proposons de
nombreuses méthodes de diagnostic pour les contre-exemples probabilistes basées sur des notions de
la théorie de la causalité. Etant donné un contre-exemple pour la propriété probabiliste qui ne détient
pas plus de modele probabiliste, ces méthodes guident I'utilisateur pour les parties les plus pertinentes
du modele qui ont conduit a I'erreur. Nous évaluons nos méthodes en utilisant plusieurs études de cas.

Dans le probabilistic model checking, plusieurs études de cas dans plusieurs domaines ont étés
réalisées. Au cours des derniéres années, il y a eu une grande tendance a utiliser le probabilistic model
checking pour analyser la dynamique et la performance des systémes biologiques. En raison de
I'importance notable de probabilistic model checking comme un outil formel pour la vérification et
l'analyse quantitative des systémes probabilistes, nous finissons en examinant cette importance et
montrant différents domaines susceptibles de bénéficier de probabilistic model checking en étudiant
son applicabilité sur deux domaines différents, le traitement médical et la technologie orientée
événement, Le Complex Event Processing (CEP) probabiliste.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Motivation

Contributions
Outline

Own Publications

2 Definitions and Theoretical Background

2.1

2.2

23

Model Checking
2.1.1 Introduction.
2.1.2 Preliminaries and Definitions
Probabilistic Model Checking . . .
2.2.1 Introduction.
2.2.2 Preliminaries and Definitions
Causality
2.3.1 Introduction.

2.3.2 Preliminaries and Definitions

3 Counterexamples in Model Checking

3.1
3.2
3.3

Introduction

Cycle Detection Algorithms

Finding Short Counterexamples

3.3.1 Explicit Algorithms

ix

xiii

XV

DN N W =

O N9

12
12
13
16
16
17

Contents

3.3.2 Symbolic Algorithms
3.4 Counterexamples for Debugging
3.4.1 Computing the Minimal Number of Changes

3.5 Counterexample Guided Abstraction Refinement (CEGAR)
3.6 Counterexamples for Test Cases Generation
37 Tools. e

3.8 Conclusion e

Causal Analysis of Probabilistic Counterexamples

4.1 Introduction and Related Works
4.2 Probabilistic Counterexamples
4.3 Causality and Responsibility for Probabilistic Counterexamples . .
4.4 Algorithm for Computing Causes Responsibilities
4.5 Probabilistic Counterexamples forMDPs
4.6 Blame for Counterexamplesof MDPs
4.7 Algorithm for Computing Blame
4.8 Experimental Results

48.1 Algorithm 1.

482 Algorithm?2

49 Conclusion e

Analysing Probabilistic Counterexamples using Regression

5.1 Imtroduction
5.2 Regression Analysis.
5.3 DiagnosticModel
5.4 Algorithm for Generating dataset
5.5 [Iustrative Example L L.
5.6 Experimental Results
5.6.1 Embedded Control System
5.6.2 Polling Server System,
5.6.3 Comparison with Previous Method

5.7 Conclusion e

Analysing Probabilistic Systems using Probabilistic Model Checking

6.1 Introduction

Contents xi
6.2 Analysing Probabilistic Complex Event Processing (CEP) Applications 74
6.2.1 Preliminaries and Definitions 76

6.2.2 CEP Verification Approach 78

6.3 Medical Treatment Analysis, 81
6.3.1 MDPs for Medical Treatment Decision 83

6.3.2 Preliminaries and Definitions 85

633 CaseStudy 86

6.4 Conclusion 93

7 Conclusions 95

References

929

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Model Checking 9
Accepting path (Counterexample) 10
Probabilistic Model Checking 13
Counterexample Guided Abstraction Refinement Process 30
Coverage based test case generation [93] 31
ADTMC . . . e 40
anMDP 47
Embedded controle system L oL oL 55
ADTMC . . . e 65
Regressionweights L oo 70
AEPA . . e 78
AnEPN . . e 79
MDP for Living Donor Transplantation [23] 88
“Wait” Actions 88
Transplantation at each timeepoch 89
Transplant transitions reward L Lo 90
Maximum Expected Life Rewards 91
Minimum expected liferewards 92
Probability of getting healthier 92

6.10 Probability ofdeath 93

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

PRISM results: model size, time construction and probabilities. 53
DiPro results for counterexample generation. 53
Execution results of our algorithm. 54
Detailed results for the causes generated 54
Execution results of our algorithm for Tand N given. 57
PRISM results for Zeroconf L. 58
PRISM Results for CSMA/CD 60
DiPro Results for CSMA/CD 60
Execution results of our algorithm on CSMA/CD 61

Counterexample dataset L. 68

Chapter 1

Introduction

1.1 Motivation

System Verification is an important task to do before building any information and commu-
nication system. System verification is the process of checking that such a system behaves
correctly by making sure that the system meets design specification . To this end we employ
such methods like formal methods to prove the correctness of a system to get more precise
verification and gain more time. Formal methods refer to the branch of applied mathematics
for modelling and analysing information and communication systems, and its efficiency is
due mainly to employing mathematical rigour. Model checking is a formal method used for
the verification of finite-state systems. Given a system model and such specification which
is a set of formal proprieties, the model checker (model checking tool) verifies whether or
not the model meets the specification. This set of properties is given usually in a logical
formalism; the mostly used is the temporal logic such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL). In case the specification is not satisfied, an error trace called
counterexample is generated as an indication for the error.

Thanks to this feature, which is the ability to generate a counterexample when the prop-
erty is not satisfied, model checking has been widely used for analysing and debugging
complex systems. Roughly speaking, a counterexamples is an error trace, by analysing it
the user can locate the source of the error. Counterexample generation has been investigated
since the birth of model checking and it has its origins in graph theory trough the problem
of fair cycle and Strongly Connected Component (SCC) detection. Due to its importance to
the designer, many works have investigated the problem of generating small counterexam-
ples, because small counterexamples are usually easy to be analysed, and thus are the most

likely for debugging purpose. Regardless of the quality of the counterexample generated,

2 Introduction

analysing a counterexample is not a trivial task; therefore, counterexample analysis is in-
evitable for debugging, because it helps the designer to better understand the failure, and

thus leads to redesign a robust system.

Probabilistic model checking has appeared as an extension of model checking for analysing
systems that exhibit stochastic behaviour. Several case studies in several domains have
been addressed from randomized distributed algorithms and network protocols to biologi-
cal systems and cloud computing environments. These systems are described usually us-
ing Discrete-Time Markov Chains (DTMC), Continuous Time Markov Chains (CTMC) or
Markov Decision Processes (MDP), and verified against properties specified in Probabilis-
tic Computation Tree Logic (PCTL) or Continuous Stochastic Logic (CSL). In recent years
there have been also a great attend to use probabilistic model checking for the estimation
of quantitative measures that help us to understand and analyse the dynamic and the perfor-
mance of biological systems, and evolving systems such as quantum computing and internet

of things.

For counterexample generation in probabilistic model checking, many algorithms and
approaches have been proposed. But unlike the previous methods proposed for conven-
tional model checking that generate the counterexample as a single path ending with bad
state representing the failure, the task in probabilistic model checking is quite different. The
counterexample in probabilistic model checking is a set of evidences or diagnostic paths that
satisfy path formula and their probability mass violates the probability threshold. As the lin-
ear representation of counterexamples in CTL model checking has been debated, where tree
representation has been proposed as a better representation, the path-based representation

of probabilistic counterexamples has also been debated.

As it is in conventional model checking, in probabilistic model checking the generated
counterexample should be small and most indicative to be easy for analysing. In probabilis-
tic model checking, this task is more challenging since the counterexample consists of mul-
tiple paths. However, generating small and indicative counterexamples only is not enough
for understanding the error. Therefore, as it was done in conventional model checking, coun-
terexample analysis for probabilistic model checking is highly required to locate the causes
of the error, especially that probabilistic counterexample consists of multiple paths instead
of single path, and it is probabilistic. In probabilistic model checking the returned coun-
terexample delivers a quantitative information, therefore counterexample analysis should

deliver quantitative explanations as well.

This thesis explores mainly for the first time the debugging of probabilistic counterex-

amples as a complementary task for counterexample generation. In this thesis, we propose

1.2 Contributions 3

novel methods based the definition of causality by Halpern and Pearl, and its quantitative
extensions responsibility and blame , as well as using regression to reason formally about
the causes, and deliver quantitative diagnoses for the error generated while modelling and
analysing stochastic systems. In addition we showed the importance of using probabilistic
model checking for verifying and analysing probabilistic and non-deterministic systems by

investigating two case studies in two different domains.

1.2 Contributions

The main contribution is that we address for the first time the analysis of probabilistic coun-
terexamples through adopting theory of causality to generate the causes and estimate their
effect on the error. Before going through, we survey some works on counterexamples in
model checking from different aspects, generation, debugging and its usefulness for other
purposes to give a better understanding and historical overview about the problem. Besides,
we show how probabilistic model checking has become an important task to verify the cor-
rectness and analyse the complex stochastic systems of now-days. To do so, we address two
applications domains in which probabilistic model checking plays an important role. Below
we cite the contributions in detail:

This thesis emphasis the usefulness of counterexamples and its importance to engineers
especially for debugging. Detailed history about counterexamples generation and analy-
sis is presented in both conventional model checking and probabilistic model checking.
We mainly focus on two aspects, counterexample generation and counterexample analy-
sis. Nevertheless, other important uses of counterexamples are presented. We believe that
the survey presented here on counterexamples covers most important and recent works on
counterexamples. Most of the works presented in this survey, especially for counterexample
debugging stand as a basic background to our work for debugging probabilistic counterex-
amples.

This thesis proposes novel methods for analysing counterexamples of probabilistic mod-
els. All the methods presented here are based on the theory of causality by Halpern and
Pearl. This theory has been adopted in many domains including model checking, especially
for explanation purpose. We also adopt two more key notions about quantitative measures of
causality, which are responsibility and blame to give weights to the causes generated by our
methods. Our methods can be applied to the majority of probabilistic models, Discrete-time
Markov chains (DTMCs), Continuous time Markov chains (CTMCs) and Markov decision
process (MDPs).

4 Introduction

Our approach does not ignore the previous approaches of generating probabilistic coun-
terexamples, but instead it is based on them. Our approach for error explanation is based
directly on the most indicative counterexamples. Hence the input of our algorithms is got
from counterexample generation tool, which is in our work DiPro tool. While this tool
aims to deliver small and indicative counterexamples, our aim is to extract the most relevant

causes from these counterexamples.

Our methods are applied on many case studies and report extensive experiments that
showed their effectiveness. Even with respect to large models, our methods show promising
results in term of diagnoses generated and especially time execution, which proves that it is
possible to deliver a practical debugging tool based on the methods proposed for probabilis-

tic models.

This thesis shows how many tools can be used in complementary way to analyse proba-
bilistic models. Although probabilistic model checker like PRISM does not generate coun-
terexamples, it is still used by other tools like DiPro for computing the probabilities, and
thus is still important for generating counterexamples. Our methods perform directly on the
counterexamples generated by DiPro. There is also AMOS tool for regression analysis that

acts on the output of one of the methods proposed.

This thesis introduces for the first time a context or application domain in which all
the theoretical notions causality, responsibility and blame are adopted together. Although
causality and responsibility have been adopted before in other practical domains, for blame
this is the first attempt. Since the difference between responsibility and blame has been de-
bated in theoretical and philosophical literature, where they are sometimes even considered
the same thing, we believe that this thesis enriches the discussion about this issue and could
be very helpful for theoretical community through showing real examples about adopting

responsibility and blame in complementary way.

In this thesis we show how probabilistic model checking can play a major role in verify-
ing the correctness and analysing quantitative properties of stochastic and non-determinism
systems. We show how we can use probabilistic model checking as a formal verification
framework for probabilistic CEP applications. Probabilistic CEP refers to the set of appli-
cations of treating events under uncertainty. We also show the usefulness of probabilistic
model checking for the first time in a non-trivial domain, which is the medical treatment .
We show how probabilistic model checking serves as a formal and logical framework for
modelling and analysing medical treatment problems described as MDPs. We will show the
effectiveness of our approach for modelling and especially cost-effective analysis of MDPs

through investigating a case study that concerns the optimal timing of living donor liver

1.3 Outline 5

transplantation.

1.3 Outline

In chapter 2, we give an introduction to model checking, probabilistic model checking and
causality. Hence, this chapter presents some important definitions that we find along the
thesis and served as a background for our work.

Since counterexample is in the heart of our thesis, we dedicate chapter 3 for surveying
major aspects and problems related to counterexample in model checking.

In chapter 4, we present our methods for analysing probabilistic counterexamples of
probabilistic models. Two algorithms are proposed for each type of probabilistic models
(deterministic and non-deterministic), Discrete Time Markov Chain and Continuous Time
Markov Chain (CTMCs) from a side and Markov Decision Processes (MDPs) from another
. Experimental results for both of the algorithms proposed are presented.

In chapter 5, we present an additional method for explaining probabilistic counterexam-
ples using causality and regression in complementary way. Experimental results are also
presented and compared to the previous method.

In chapter 6, we introduce the use of probabilistic model checking for modelling and
analysing systems that exhibit stochastic and non-determinism behaviour. We investigate
its applicability on two different domains, probabilistic Complex Event Processing (CEP)
and medical treatment analysis.

Finally a conclusion and future works and directions are presented.

1.4 Own Publications

The first work was published in the Journal of Computing and Information Technology
(CIT) [71]. It included the first approach proposed for debugging probabilistic counterex-
amples. The second work which is an extension of the first one by proposing the notion of
criticality and responsibility that goes together with the notion of cause having the highest
probability was published in the Eleventh ACM-IEEE International Conference on Formal
Methods and Models for Codesign (Memocode) [72]. The work that investigates the use of
probabilistic model checking for medical treatment analysis was published in the Interna-
tional Journal of Biomedical Engineering and Technology (IJBET)[74]. The work in which
we proposed an approach for verifying probabilistic CEP applications was published in the

First International Symposium on Informatics and its Applications(ISIA) [73].

Chapter 2

Definitions and Theoretical Background

2.1 Model Checking

2.1.1 Introduction

System verification is an important task to do before building any information and commu-
nication system. System verification is the process of checking that such a system behaves
as it is intended by making sure that the system meets design specification. The specifica-
tion constitutes of set of elementary properties obtained from the supposed normal behave
of the system, such as , a system should never crashes or it should always complete such
task ..., and a defect arises once the system does not fulfil this specification.

One of the most known and most successful methods used in systems verification are for-
mal methods. Formal methods are mathematical based methods for modelling and analysing
information and communication systems, and its efficiency is due mainly to employing
mathematical rigour. The resulting report of an investigation by the FAA (Federal Aviation
Authority) and NASA (National Aeronautics and Space Administration) about the use of
formal methods concludes that:

"Formal methods should be part of the education of every computer scientist and software
engineer, just as the appropriate branch of applied maths is a necessary part of the

education of all other engineers."

One of the formal methods that have known a great success over other formal methods
is model checking . Model checking is an automatic technique for verifying the correctness

of finite-state systems in exhaustive manner. Given a model of the system, the role of model

8 Definitions and Theoretical Background

checker is to check whether the model meets such specification and thus it always termi-
nate with a Yes/no answer. In case the specification is not satisfied, a counterexample is
generated as an error trace, where the error could emerge from incorrect modelling of the
system or from the specification itself . To do so, model checking algorithms explored all
the possible states the system could be in, and therefore with large systems this could be
very consuming especially from memory perspective, this problem is called "state explo-
sion problem". Actually, this is the main problem of model checking that has been dealt
with since the birth of model checking. The model checking process consists of the main
following tasks:

Modelling: This task aims to deliver a model of the system using some model de-
scription language that can be accepted by a model checker. Despite the language used,
it generally enables the representation of the system as finite-state automata, where states
comprise information about the current values of variables and transitions describe how the
system evolves from one state into another. In model checking, we refer to the transition
system describing the behaviour of the system Kripke structure .

Specification: Before performing verification, a set of properties that should be satis-
fied by the model must be delivered. This set of properties is given usually in a logical
formalism, the mostly used is temporal logic since it is capable of representing how the
system’s behaviour evolves over time, where temporal logic formula is interpreted in the
term of Kripke structure. Temporal logic is an extension of traditional propositional logic
with modal operators. According to what we assume about time, temporal logics are either
linear (Linear Temporal Logic (LTL)), or branching(tree) (Computation Tree Logic (CTL)).
Using temporal logics we can express two main types of properties:

Safety properties. state that something bad never happens, a good example of that is
mutual exclusion that states that having two processes in their critical section simultaneously

should never happen.

Liveness properties. state that something good eventually happens, As an example: a
message sent will be eventually received.

Verification: this task is the task in which model checking takes a place, the model
checker employing such algorithms explores all the states of the model to check the cor-
rectness of the properties at hand. In case negative result is delivered, the phase of analysis
comes to help to find the source of the error given the counterexample generated, which
can lead to redesign the system and replicate the verification process. The algorithms used
for the verification are ranged in two main categories, explicit state algorithms that run on

the entire model, or symbolic algorithm that employee symbolic techniques such as binary

2.1 Model Checking 9

Model Checker

Verification a __,/__/__
sy L G

Debugging

Finit state model

Property Counterexample
specification

Fig. 2.1 Model Checking

decision diagrams for representing the state space.

2.1.2 Preliminaries and Definitions

Definition 2.1.1. (Kripke Structure) A Kripke structure is a tuple M = (AP, S, so, R, L) that
consists of a set AP of atomic propositions, a set S of states, so € S an initial state, a total
transition relation R C S x S and a labelling function L : W — 247 that labels each state with

a set of atomic propositions.

Definition 2.1.2. (Biichi Automaton) A Biichi automaton is a tuple B = (S,s0,E,Y.,F)
where S is a finite set of states, sg € S is the initial state, E C § x § is the transition relation,)

is a finite alphabet, and ' C § is the set of accepting or final states.

We use Biichi automaton to define a set of infinite words of an alphabet. A path is
a sequence of states (sosi...,sx), k > 1 such that (s;,s;+1) € E for all 1 <i < k. A path
(s0S1...,5;) is a cycle if s, = s1, the cycle is accepting if it contains a state in F. A path
(50S1.-+,8k-...5;) wWhere [> k is an accepting if sy...s; forms an accepting cycle. We call
a path that starts at the initial state and reaches an accepting cycle an accepting path or
counterexample (see Fig 2.1). A minimal counterexample is an accepting path with minimal

number of transitions.

Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)

The syntax of LTL state formula over the set AP are given as follows :

@ = truela|=@|d1 A ¢2| O ¢|01U ¢

10 Definitions and Theoretical Background

— S RN

f 50 513—» eee —B sk P e —m'rl/ 51 |\J

NI\ ,)
N, A

Fig. 2.2 Accepting path (Counterexample)

where a € AP is an atomic proposition. The Other Boolean connectives can be simply
derived using the Boolean connectives = and A. The eventual operator F' and the always
operator and G can be easily derived using the temporal operator U.

Given a path 7T = s¢s; ... and an integer j > 0, where 7[j] = s;, T, such that Words(¢) =
{7 € (2P)")o |= ¢}, the semantics of LTL formulas for infinite words over 24 are given

as follows:

T = true < true

TEasacL(s)

TE-¢ ST

TEQAQSsEQAsE@

TEQO¢ < rl]=¢

m =00 < 3j=20.7[j] = 92N (VO <k <jm[k] = ¢1)

Verifying whether a finite state system described in Kripke structure Ay satisfies an LTL
property @ reduces to the verification that A = Ay N A-¢ has no accepting path, where A
refers to the Biichi automaton that violates @, Ly (A) = Words(—¢). We call this procedure
a test of emptiness. So, In case Ay NA-¢ # 0 a counterexample is generated.

We use the Computation Tree Logic (CTL) for specifying properties of systems de-
scribed using Kripke Structures. The CTL formulas are evaluated over infinite computations
produced by Kripke structure K. A computation of a Kripke structure is an infinite sequence
of states sos1, ... such that s;,s;11 € R for all i € N. We denote by Paths(s) the set of all paths
starting at s. The syntax of CTL state formula over the set AP are given as follows :

¢ ::=truela|=¢|¢) A 2| 3|V

where a € AP is an atomic proposition and ¢ is a path formula. The path formulas are

formed according to the following grammar:

¢ ::=00|01U ¢,

2.1 Model Checking 11

We denote by K,s |= ¢ the satisfaction of CTL formula at a state s of K. The semantics

defined by the satisfaction relation for a state formula are given as follows

K,s =true < true

K,sEa<saclL(s)

KiskE-¢=siE¢
K,S}Z(P]/\QI)Q@SIZ(M/\S):(PQ

K,s =3¢ < for some 7 € Paths(s), T = ¢
K,s =V < forall m € Paths(s), T = @

Given a path 6 = sps;... and an integer j > 0, where o[j] = s;, The semantics of path

formulas are given as follows:

KrnE=O¢ ol =¢
K.m=01Upy & 3j>0.x[jl = g2 A(VO <k < jm[k] = 1)

In case the Kripke structure violates the specification K [~ ¢ a counterexample will be
generated. For CTL model checking , the counterexample is also expected to be a Kripke
structure, just it should be suitable for explaining the violation [51].

Both LTL and CTL are considered as sub-logics or fragments of the logic CTL* intro-
duced by Emerson and Halpern [57]. CTL is the subset of CTL* where each path operator
(O and U must immediately preceded by path quantifiers A or E, whereas LTL is the subset
of CTL* that consists of formulas that have the form A f, where f is a path formula in which
the only state formulas are just atomic propositions [60]. ACT L is the analogue fragment of
CTL and thus of CTL*, where the only quantifier allowed is A. Using CTL* we can express
formulas of the form A(FGp) VAG(EF p), which is a disjunction of LTL and CTL formula.

Generally two types of properties can be expressed using temporal logics: Safety and
Liveness. Safety proprieties state that something bad never happens, a simple example of
that is the LTL formula G—error that means that error is never occurred. Liveness properties
state that something good eventually happens, a simple example of that is the CTL formula

(AGreq — AF grant) that means that every request is eventually granted.

Strongest Connected Component

A graph is a pair G = (V,E), where V is a et of states and E C V x V is the set of edges. A
path is a sequence of states (vy,...,vx), kK > 1 such that (v;,v;;1) € Eforall 1 <i<k. Letm
be a path, the length of 7 is defined by the number of transitions and is denoted by [r]. We

say that we can reach a vertex u from a vertex v if there exists a path from v to u. We define a

12 Definitions and Theoretical Background

Strongly Connected Component (SCC) as a maximal set of states C C V such that for every
pair of vertices u,v € C, u and v are mutually reachable. A SCC C is trivial if C = {v}, or

otherwise C is non-trivial if for every u,v € C there is a non-trivial path from u to v.

2.2 Probabilistic Model Checking

2.2.1 Introduction

In real life, systems are subject to phenomena of stochastic nature. For instance, it is usually
impossible to totally guarantee the correctness of "it is impossible that the process fails" or
"a message sent never lost". As a result, we should guarantee instead that " with 0.01 chance
the process will fail " or "with chance 0.99 the message will not be lost" . Probabilistic
model checking has appeared as an extension of model checking for analysing this kind
of systems that exhibit stochastic behaviour. In probabilistic model checking, the model is
constructed by assigning probabilities to the transitions between states of the system, and

the specifications will be also subjected to deal with probabilities thresholds.

In all information and communication systems, Markov chains have been proved as
the most probabilistic operational model, in probabilistic model checking are also the most
used. Roughly speaking, Markov chains are transition systems with probability distributions
over the states. In probabilistic model checking , the probabilistic systems are usually de-
scribed using Discrete-Time Markov Chains (DTMC) or ContinuousTime Markov Chains
(CTMC) , and Markov Decision Processes (MDP) for non-diterminismtic systems, and ver-
ified against properties specified in Probabilistic Computation Tree Logic (PCTL) [108] or
Continuous Stochastic Logic (CSL) [31, 32]. While we use PCTL for specifying properties
of DTMCS, we use CSL for specifying properties of CTMCs. probabilistic model checking
process like conventional model checking consists of the same steps, modelling, specifica-

tion and verification (see Fig 2.3).

While the algorithms used in conventional model checking are based on graph analysis,
in probabilistic model checking the algorithms used reduce to solving a system of linear
equations. Nevertheless, there are other model checkers [112, 183] that employ statistical
execution sampling for the verification . We also find other approaches that tend to use
automata-based techniques [174]and tableau-based techniques [64] to check linear temporal
logic (LTL) formulae.

2.2 Probabilistic Model Checking 13

a2 b . YES

05 \/
A] J
Probabilistic

Model Checker

Markov model

Verification
> —

Counterexample Debugging

Probabilistic
Property (PCTL-
CSL)

Fig. 2.3 Probabilistic Model Checking

2.2.2 Preliminaries and Definitions
Probabilistic Models

Definition 2.2.1. (Discrete Time Markov Chain (DTMC)) A Discrete-Time Markov Chain
(DTMC) is a tuple D = (S, sinir, P,L) , such that S is a finite set of states, s;,; € S the initial

2AP

state, P: S x S — [0, 1] represents the transition probability matrix, L: S — is a labelling

function that assigns to each state s € S the set L(s) of atomic propositions.

An infinite path o is a sequence of states sos;s>... , where P(s;,s;1) > 0 for all i > 0.
A finite path is finite prefix of an infinite path. We define a set of paths starting from a state
so by Paths(sg). The underlying c-algebra is formed by the cylinder sets which are induced
by finite paths in Paths(so). The probability of this cylinder set is:

P(0 € Paths(sg)|sos1...spis a prefix of 6) = H P(si,Sit1) (2.1)

i<0<n
Definition 2.2.2. (Continuous Time Markov Chain (CTMC)) A Continuous Time Markov
Chain (CTMC) is a tuple C = (S, sjnir, R, L) , such that S is a finite set of states, s, € S the

2AP

initial state, R : S x § — R represents the transition rate matrix, L : S — is a labelling

function that assigns to each state s € S the set L(s) of atomic propositions.

Comparing to DTMC, the main difference is that with DTMC we have the transition
probability matrix that corresponds to discrete-time steps, whereas with CTMC, the transi-
tion can occur in real-time, and thus are presented by the transition rate matrix, where every

time rate of transition from s to s is given by R(s,s’). This parameter represents a nega-

14 Definitions and Theoretical Background

tive exponential distribution that contributes to computing the transition probability within

¢t time units.

Definition 2.2.3. (Markov Decision Process (MDP)) A Markov Decision Process (MDP)
is a tuple M = (S, sinir, A, P,L), where S is a finite set of states, s;,; € S is the initial state, A is
a set of actions , P: S x A x § — [0, 1] is a probability transition function such that for every
state s € S and an action & € A : YycgP(s,a,s') € {0,1}, and L : S — 247 is a labelling

function that assigns to each state s € S a set of atomic propositions.

At each state s, the probability of moving to a successor state s’ by taking an action
o is given by P(s,a,s’). We say that an action o is enabled in state s if and only if
YoesP(s,a,s') = 1, otherwise the action « is disabled. For each state s € S there is at
least one action enabled. We denote the set of actions enabled from a state s by A(s).

An infinite path o is an infinite sequence G = sg %o, s1 o, §7... with o € A(s;) such that
P(s;,q;,si+1) > 0 for all i > 0 . We define the set of infinite paths starting from a state sy by
Paths(so). A finite path is finite prefix of an infinite path. We denote by FinitePaths(sg) the
finite paths starting from a state sg. For Discrete-time Markov chains (DTMCs), the under-
lying o-algebra is formed by the cylinder sets which are induced by FinitePaths(sy). For
MDPs, computing the probabilities of paths must rely on the resolution of non-determinism,
which is performed by a scheduler. A scheduler d resolves the non-determinism by taking
in each state one of the enabled actions a € A(s), thus resulting in DTMC for which the
probability of paths is measurable. Then, the underlying o-algebra is formed by the cylin-
der sets which are induced by finite paths under this scheduler denoted FinitePaths,(so).
The probability of this cylinder set is computed by using the following formula :

P;(o € FinitePathsy(so)|o = so %o, s 2L RN Sp) = H P(si, O, Sit1) (2.2)

i<0<n

Probabilistic Logics

The Probabilistic Computation Tree Logic (PCTL) [108] has appeared as an extension of
CTL for the specification of systems that exhibit stochastic behaviour. We use the PCTL for
defining quantitative properties of DTMCs. PCTL state formulas are formed according to

the following grammar:

¢ = truelal =9 |1 A ¢2[Pp ()

2.2 Probabilistic Model Checking 15

Where a € AP is an atomic proposition, @ is a path formula, P is a probability threshold
operator, ~€ {<,<,>,>} is a comparison operator, and p is a probability threshold. The

path formulas ¢ are formed according to the following grammar:

@ = U |t W |91 U=" |y W=" ¢

Where ¢; and ¢, are state formulas and n € N. As in CTL, the temporal operators (U
for strong until, W for weak (unless) until and their bounded variants) are required to be
immediately preceded by the operator P. The PCTL formula is a state formula, where path
formulas only occur inside the operator P. The operator P can be seen as a quantification
operator for both the operators V (universal quantification) and 3 (existential quantification),
since the properties are representing quantitative requirements.

The semantics of a PCTL formula over a state s (or a path o) in a DTMC model D =
(S, sinit, P,L) can be defined by a satisfaction relation denoted by |=. The satisfaction of
P.,(¢) on DTMC depends on the probability mass of set of paths satisfying ¢. This set is
considered as a countable union of cylinder sets, so that, its measurability is ensured.

The semantics of PCTL state formulas for DTMC is defined as follows:

s |=true < true
sEasacL(s)
sSE¢ s
sEQAp S sENASE R
sEP(@) = PisEQ) ~p

Given a path ¢ = s¢sj... in D and an integer j > 0, where &[j] = s, The semantics of PCTL
path formulas for DTMC is defined as for CTL as follows:

ol 0Up < 3j>0.0[j] = dAMO<k< j.o[K E o)
cEWh <o E=0UpV (Vk=0.0k] = ¢r)

o= U9 & 30< j<no[jllEpAV0<k<jcklE¢)
o E W9 < 0= U™V (VO<k<noklE¢)

The satisfaction of P.,(¢) on DTMC depends on the probability mass of set of paths
satisfying @. This set is considered as a countable union of cylinder sets, so that, its measur-
ability is ensured. A formula P.,(¢) is satisfied on an MDP M if only if for every d € D:
P,(¢)~ p, where D represents the set of all schedulers and P;(¢) represents the probability
of the set of all finite paths satisfying ¢ under the scheduler d.

The semantics of PCTL state and of path formulas for MDPs are defined as the same as

for DTMCs, except that for model checking of MDPs we have to consider either maximizing

16 Definitions and Theoretical Background

or minimizing schedulers. let P,,(¢) be the maximal probability of ¢ where P, (¢) =
max{P;(®)|d € D}, and dually the minimal probability P,,;,(¢) be the minimal probability
of ¢ where P,,i,(¢) = min{P;(¢)|d € D}. For instance for properties of upper threshold , it
is evident that (M = P<;(@)) < Puax(e)>p-

For specifying properties of CTMC, we use The Continuous Stochastic Logic (CSL)
. CSL has the same syntax and semantics as PCTL, except that in CSL, the time bound
in bounded until formula can be presented of an interval of non-negative reals. Before
verifying CSL properties over CTMC, the CTMC has to be transformed to its embedded
DTMC. Therefore, further description of CTMC model checking is not addressed in this
thesis. We refer to [31, 32] for further details.

2.3 Causality

2.3.1 Introduction

All the definitions of causality in literature are mainly based on counterfactual reasoning,
event A is a cause of event B if, had A not happened then B would not have happened.
Following the intuition about cause by [122] that states that a cause is something that makes
a difference, or an event that leads to an effect, Lewis proposed his approach for counterfac-
tual modelling using the possible worlds semantics. By assuming an actual world and other
alternative worlds, Lewis’s definition for a counterfactual statement between two events a
and b denoted a — b is subjected to the relation of comparative similarity between the ac-
tual world and the alternative ones. The causal dependence between a and b is concluded,
if only if among all the worlds, we should find that the most similar one in which —a there
should be —b, which means that in order to say that a — b, a and b should appear together
in similar worlds, otherwise there is no causal dependence.

Unfortunately, this definition does not capture all the cases we face in real world. Let us
take the major known example of Suzy and Billy who both pick up rocks and throw them
at a bottle. Suzy’s rock gets there first, shattering the bottle. Since both throws are perfectly
accurate, Billy’s would have shattered the bottle had it not been pre-empted by Suzy’s throw.
Thus, according to the counterfactual condition, Suzy’s throw is not a cause for shattering
the bottle. Halpern and Pearl [104] have addressed this issue by taking A to be a cause of
B if B counterfactually depends on A under some contingency. For example, Suzy’s throw
is a cause of the bottle shattering because the bottle shattering counterfactually depends on

Suzy’s throw, under the contingency that Billy does not throw. Both of the definitions have

2.3 Causality 17

been widely used in many domains especially for explanation.

2.3.2 Preliminaries and Definitions

Halpern and Pearl have extended the Lewis counterfactual model [140] to what they re-
fer to as structural equations for modelling the causal influence made by random variables.
According to them, any phenomena we notice around us can be described by random vari-
ables,while some variables have direct influence on each other called endogenous variables
, other can be seen as contributing factors and called exogenous variables . Let us take an
example of forest fire caused by match lit by an arsonist. As endogenous variables we could
easily see that we have endogenous variable F represents the effect (fire) and L lighting
represents the cause, but we can not ignore the existence of other factors that represent the
set of exogenous variables such as: the dry of wood or the enough oxygen in the air.

Halpern and Pearl introduced the causality model M as a tuple M = (U,V,F), where
random variables are partitioned into two sets, the exogenous variables U, whose values are
determined by factors outside the model M, but they should be represented to encode the
context, and the endogenous variables V whose values are determined by set of functions
F, where each fy, € F is a mapping from U U (V' \ V;) to V;. Thus, each fy, tells us the value
of V; given the values of all other variables in U UV.

We call a Boolean combination of primitive events a basic causal formula. We call a
Boolean combination of basic causal formulas a causal formula. A causal formula ¢ is true
or false in causal model, given a context. We write (M, 7) = @ if @ is true in causality
model M given a context U, where U represents a setting for the variables in U. We write
(M, ") = [7 ~ ¥](X = x), where Y c V, if X has a value x in M given a context i/
and the assignment 7 to 7 The formulas that are allowed to be causes for ¢ are ones of
the form X; = x; A ... AX; = x; which is abbreviated to the form Y = X. With all these
definitions in hand, we can now give the definition of an actual cause by Halpern and Pearl.

Definition 2.3.1. (Actual Cause) we say that X =X is an actual cause of @ in (M, W) if
the following holds:

L. M) E(X =F)re

2. There exists a partition (7, W) of V with X C 7 and some setting (%', W) of the
variables in (Y’, W’) such that if (M, W) =Z=z7"forZ e 7, then
a-(M,) = [Y CRLW W'] A=

b- (M, W) |= [? — 7,V_V> — W’,?’ — ?] A @ for all subsets 7' of Z.

18 Definitions and Theoretical Background

3. The set of variables 7 is minimal (no subset of 7 satisfies the conditions 1 and 2).

The first condition states that both Y — ¥ and ¢ are true in the current context, given
the variables ? and their values x. The second condition states that any change on (7, V_V>)
will change ¢ from true to false, changing W will have no effect on ¢ as long as the values
of Y are kept at the current values, even if all subsets 7’ of 7 are set to their original values
in the current context. Minimality condition ensures that only elements in the conjunction
? — X are essential for changing ¢ from true to false. As a consequence of this condition,
we can refer to a cause as X = x, because the causes can always be taken to be single
conjuncts [10].

Based on this definition, [20] introduced the definition of responsibility . Responsibility

extends the concept of all-or-nothing of the actual cause X = x for the truth value of ¢ in

(M,).

Definition 2.3.2. (Responsibility) The degree of responsibility of X = x for the value of ¢
in (M,), denoted dr((M, W),X = x,¢) is 0, if X = x is not a cause for @, and otherwise
is 1/(|W|+1).

That is, the degree of responsibility measures the number of changes that have to be
made in % in order to make ¢ counterfactually depend on X, where V4V> refers to the set of
variables that satisfies the condition 2) in Definition 2.3.1. It is easy to adapt this definition to
the example of Suzy and Billy throwing a rock on a bottle. Suzy’s throw has a responsibility
1/2 for bottle shattering, since there is a contingency has to be made (Billy does not throw)
in order to make the bottle shattering counterfactually dependent on Suzy’s throw. Roughly
speaking, the degree of responsibility of a cause A for B where B counterfactually depends
on A is taken to be 1/(N + 1), where N represents the minimal number of changes that must
take place to obtain a contingency. Let us consider a vote that takes place between two
persons A and B, where the number of voters is 11. let us consider that all of them voted
to A, this makes the result 11 — 0. By considering the mechanism of winning is majority-
mechanism, each voter has a degree of responsibility (1/(5+ 1)) = 1/6, where 5 represents
the number of voters that have to change their minds by voting to B in order to make each
vote is critical. The degree of responsibility has been proved that it could provide a good
measure for the degree of fault-tolerance in a system as well as in coverage [21].

Causality and responsibility rely on the assumption that the context is well-defined,
when it comes to uncertainty about the context in which variables should have such values,
we face in addition a question of blame, which action should be blamed for such outcome.

According to Chockler et al. [20], we model this uncertainty as a pair (K, Pr), where K is a

2.3 Causality 19

set of situations (M, 7) and Pr is a probability distribution over K, then the degree of blame
that a setting X to x has for ¢ is computed based on the responsibility of X = x for ¢ over
the situations (M, W) € K.

Definition 2.3.3. (Blame) The degree of blame of X < x for ¢ relative to (K, Pr), denoted
db(K,Pr,X x,9) is ¥y 7)ex dr((Mxex, #),X = x,9)Pr((M, W)

Because responsibility is directly based on the definition of actual cause, it also repre-
sents actual state, whereas blame is relative to an epistemic state, which is a set of situations
before the action considering as a cause takes place. Let us consider an example of two
hunters hunting a prey. If we consider that we gave them two rifles where one has live bul-
lets, the other has blanks, and the situation is that neither of them know about it. By firing
on the prey, only the one who has live bullets is considered as a cause for the prey’s death,
and thus has responsibility 1. However, both of them share the blame for prey’s death 1/2.

This example pretty shows the intuitive difference between the two definitions.

Chapter 3

Counterexamples in Model Checking

3.1 Introduction

One of the major advantages of Model checking over other formal methods its ability to
generate a counterexample when the model falsifies such specification. The counterexample
is an error trace, by analysing it the user can locate the source of the error. The original
algorithm for counterexample generation was proposed by [52] and was implemented in
most symbolic model checkers. This algorithm of generating linear counterexamples for
ACTL, which is a fragment of CTL was later extended to handle arbitrary ACTL properties
using the notion of tree-like counterexamples [53]. Since then, many works have addressed
this issue in conventional model checking.

Counterexample generation has its origins in graph theory trough the problem of fair
cycle and Strongly Connected Component (SCC) detection, because model checking algo-
rithms of temporal logics employ cycle detection , and technically a finite system model
is determining a transition graph [60]. The original algorithm for fair cycle detection in
LTL and CTL model was proposed by [84], since then, many variants of this algorithm and
new alternatives were proposed for LTL and CTL model checking. In section 3.2 we will
investigate briefly the problem of fair cycles and SCCs detection.

While the early works introduced by Clarke and Emerson [83] have investigated the
problem of generating counterexample in general manner, which leads to practical imple-
mentation within well known model checkers , The open problem that emerged was the
quality of the counterexample generated and how it really serves the purpose. As a result,
in the last decade many papers have considered this issue, earlier in term of structure by
Clarke [53] by proposing the notion of tree-like counterexamples to handle ACTL proper-

ties, and followed by the works investigating the quality of the counterexample mostly in

22 Counterexamples in Model Checking

term of length to be useful for debugging. Hence, in section 3.3, we will investigate the
methods proposed for generating minimal, small and indicative counterexamples in conven-
tional model checking. Model checking algorithms are classified in two main categories,
explicit and symbolic. Where explicit algorithms are applied directly on the transition sys-
tem, symbolic algorithms employ specific data structures. Generally, the explicit algorithms
are adopted for LTL model checking, whereas symbolic algorithms are adopted for CTL
model checking. In this section, The algorithms for generating small counterexamples are
presented with respect to each type of algorithms.

However, generating small and indicative counterexamples only is not enough for under-
standing the error. Therefore, counterexamples analysis is inevitable for debugging. Many
works in conventional model checking have addressed the analysis of counterexamples to
better understand the error. Therefore, we will investigate the counterexample analysis in
conventional model checking in section 3.4.

The most important thing about counterexample, is that it does not just serve as a debug-
ging tool, but it is also used to refine the model checking process itself through the technique
called Counterexample Guided Abstraction Refinement(CEGAR)[58]. CEGAR is an auto-
matic method in the verification proposed to tackle the problem of state-explosion problem
and it is based on the information obtained from the counterexamples generated. In section
3.5, we will show how counterexample contributes to this famous method of verification.
In addition, we will show in section 3.6 how counterexample serves as a good tool for
generating test cases.

Although counterexample generation is in th heart of model checking, not all the model
checkers existed deliver counterexamples to the user. In section 3.7, we will review the
famous tools that generate counterexamples. We conclude by citing brief open problems

and future directions.

3.2 Cycle Detection Algorithms

Counterexample generation has its origins in graph theory trough the problem of existing
cycle detection, since cycle detection is in the heart of model checking algorithms, either
explicit or symbolic model checking . Varied algorithms were proposed for both LTL and
CTL model checking in the literature. Explicit state model checking is based on Biichi
automaton which is a type of w-automata. The fairness condition relies on several sets
of accepting states, where the acceptance condition is visiting the acceptance set infinitely

often. So, a run is accepting if only if it contains a state in every accepting set infinitely

3.2 Cycle Detection Algorithms 23

often. As a result, the emptiness of the language is based on checking the non-existence
of the faire cycle or equivalently the fair non-trivial strongly connected component (SCC)
that intersects each accepting set. In case of non-emptiness, the accepting run is a sign
of property failure, and as a result is returned as an error trace. We call this error trace a
counterexample. So, the counterexample is typically presented by a finite stem followed by
a finite cycle. Varied algorithms were proposed to find the counterexample in reasonable
time, where finding the shortest counterexample has been proved that is a NP-Complete
problem [52, 117].

For finding the fair SCC, depth first search (DFS) and Breath First Search (BFS) algo-
rithms are used. The main algorithm employing DFES is the Tarjan’s algrithm [170] that is
based on manipulating the states of the graph explicitly. This algorithm was used to generate
counterexamples by many other approaches [66, 173]. This algorithms runs in linear time,
but as the number of states variables grows, it becomes simply infeasible. As a result, the

symbolic-based algorithms are proposed as a solution.

In contrast to explicit algorithms, symbolic algorithms [41, 43] employ BFS and can
describe large sets in compact manner through using characteristic functions. Several sym-
bolic algorithms were proposed for computing the set of states that contains all the fair
SCCs, without enumerating them [60, 116, 172]. We refer to these algorithms as SCC-
hull algorithms. Currently, most of symbolic model checkers are employing Emerson’s
algorithm due to its high performance, and it was proven by [91] that both of the algorithms
[83] and [52] can work in complementary way. Other works [118, 181] proposed algorithms
based on enumerating the SCCs, we refer to these algorithms as symbolic SCC-enumeration

algorithms.

Different approaches for generating counterexamples are proposed regarding the two
types presented before. Clarke et al. [52] proposed a hull-based approach based on Emer-
son’s algorithm by searching a cycle in a fair SCC close to the initial state. Since there is no
guarantee to find terminal SCCs close to the initial state, finding short counterexamples was
still a trade-off and an open problem, and thus it was investigated later by many researchers
as we will show in the next section. The other approach by Hojati [116] was also employed
by other works for generating counterexamples which employee isolations techniques of
the SCCs [130]. Using Emerson’s algorithm in combinatory way with SCC-Enumeration
algorithm is possible, but is still not guaranteed to get a counterexample of short length.

Ravi et al. [152] introduced a careful analysis of each type of these algorithms.

24 Counterexamples in Model Checking

3.3 Finding Short Counterexamples

3.3.1 Explicit Algorithms

A counterexample in the Biichi automaton is a path ¢ = By where B is a path without
loop from the initial state to an accepting state, and Y is a loop around this accepting state.
So that, a minimal counterexample is simply a counterexample with a minimal number of
transitions. More formally, a counterexample o = B is minimal if (|| +|y]) < (|B'| +
|Y|) . With respect to this definition, a counterexample has at least one transition. Many
algorithms consider the issue of generating counterexamples given Biichi automaton [119,
153, 175]. All these works employ Nested-Depth First Search, but they are not capable of
finding a minimal counterexample. Although minimal counterexamples can be computed
in polynomial time using minimal paths algorithms, the main drawback in fact is memory,
where the resulting biichi automaton to be checked for emptiness is usually very huge, the
thing that makes storing all the minimal paths to be compared so difficult.

Just recently new methods were proposed to compute minimal counterexample in Biichi
automaton [96, 97, 107]. [97] proposed a DFS algorithm that runs in Q(ni) and they
showed that ()(nlogn) is sufficient, although DFS algorithms are memory consuming in
general. This is due to the optimizations added using interleaving. Since the algorithms are
based on exploring transitions backwards, adapting this method in practice is very difficult,
especially by considering some restrictions. While this method requires more memory as
SPIN does, [96, 107]proposed a method that does not use more memory than SPIN does.
While the first one uses DFS and its time complexity is exponential [107], in [96] they pro-
posed BES algorithm with some optimisations able of computing the minimal counterexam-
ple in polynomial time. Hansen et al. [106] also proposed a method for computing minimal
counterexamples based on Dijkstra algorithm for detecting strongly connected components.
A novel approach was proposed by [127] for generating short counterexamples based on
analysing the entire model and defining which events have more contribution to the error,
these events are called crucial. In addition to generating short counterexamples, the tech-
nique helps with reducing the state space. The main drawback of this method is how to

identify if such set of events are crucial and really lead to the error.

3.3.2 Symbolic Algorithms

The original algorithm for counterexample generation in symbolic model checking was pro-

posed by [52]and was implemented in most symbolic model checkers. This algorithm of

3.4 Counterexamples for Debugging 25

generating linear counterexamples for a fragment of ACTL was later extended to handle ar-
bitrary ACTL properties using the notion of tree-like counterexamples [53]. Since then,
many works have addressed the issue of computing short counterexamples in symbolic
model checking [59, 146, 158].

[158] Proposed some criteria that should be met for the biichi automaton to accept short-
est counterexamples. They proved that this criteria is satisfied in the approach proposed by
[59] just for future time LTL specification, and thus they proposed an approach that met
the criteria proposed for LTL specifications with past. The algorithm proposed employs
breadth-first reachability check with BDD-based symbolic model checker.

The authors in [146] proposed a black-box based technique that masks some parts of the
system in order to give understandable counterexample to the designer. So the work does
not just tend to produce minimal counterexamples, but rather, it delivers small indicative
counterexample of good quality to be analysed in order to get the source of the error. The
most drawback of this method is that the generalization of counterexample generation from
symbolic model checking to Black Box model checking could lead to non-uniform coun-
terexamples that do not meet the behaviour of the system intended. While all of these works
are applied to unbounded model checking [146, 158], the works [151, 166, 167] consider
bounded model checking using SAT solvers, through lifting assignments produced by a SAT
solver. This actually makes the quality of the counterexample generated is dependent on the
SAT solver itself. Other works have investigated the use of heuristics algorithms for gener-
ating the counterexamples [80, 169]. Although heuristics were not widely used, they gave
pretty good results, and were also used latter for generating probabilistic counterexamples,

as we will see later.

3.4 Counterexamples for Debugging

One of the major advantages of model checking over other formal methods its ability to
generate a counterexample when the model falsifies such specification. The counterexample
represents an error trace; by analysing it the user can locate the source of the error, and as
Clarke wrote : The counterexamples are invaluable in complex systems and some people
use model checking just for this feature [56].

However, generating small and indicative counterexamples only, as has been presented
in the previous section is not enough for understanding the error. Therefore, counterexam-
ples explanation is inevitable. Error explanation is the task of discovering why the system

exhibits this error trace. Many works have addressed the automatic analysis of counterex-

26 Counterexamples in Model Checking

amples to better understand the failure. Error explanation ranges in two main categories .
The first is based on the error trace itself, through considering the small number of changes
that have to be made in order to ensure that the given counterexample is no longer exhibited,
and thus of course these changes represent the sources of that error. The second is based on
comparing successful executions with the erroneous one in order to find the differences, and
thus those differences are considered as candidate causes for the error. Kumar et al. [133]
have introduced a careful analysis of the complexity of each type. For the first type, they
showed using three models(Mealy machines, extended finite state machines, and push-down
automata) that this problem is NP-complete. For the second type, they provided a polyno-
mial algorithm using Mealy machine and push-down automata, but solving the problem was

difficult with extended finite state machines.

Error explanation methods are successfully integrated in model checkers such as SLAM
[33] and Java Path finder [40]. SLAM takes time execution less than JP does and can achieve
completeness in finding the causes, but according to Groce [102], this also could be harmful.
The error explanation process has many drawbacks, the main one is that the counterexample
consists usually of huge number of states and transitions and involves many variables. The
second is that model checker usually floods the designer with multiple counterexamples,
without any some sort of classification, which makes choosing the helpful counterexam-
ple difficult. Besides, a single counterexample it might not be enough to understand the
behaviour of the system. Analysing set of counterexamples together is an option but the
problem is that it requires much effort, and even though, the set of counterexamples to be
analysed could contain the same diagnostic information, which makes analysing this set of
counterexamples a waste of time. The last and the main important problem in error explana-
tion is that not all the events that occur on the error trace are of importance for the designer,
and so locating these events which are critical is the goal behind error explanation. In this

section, we survey some works with respect to the two categories.

3.4.1 Computing the Minimal Number of Changes

Jin et al. [125] proposed an algorithm for analysing the counterexamples based on the local
information, by segmenting the events of the counterexamples in two main segments, fated
and free. The fated segments refer to the events that obviously have to occur in the execu-
tions, and the free segments refer to the events that may be avoiding them could not exhibit
the error, and thus they are candidate to be causes. The approach is mainly based on com-

puting the fated segments by considering the containing of the variables named controlling,

3.4 Counterexamples for Debugging 27

which are considered to be critical and have more control on the environment. Then, the

free segments will be simply those that are not fated.

Wang et al. [176] also proposed a method that works just on the fail run without con-
sidering successful runs. The idea is about looking at the predicates candidate for causing
the failure in the error trace. To do so, they use weakest pre-condition computation, the
technique that is widely used in predicate abstraction. This computation aims to find the
minimal number of conditions that should be met in order to not let the program violate the
assertion. This results in a set of predicates that contradict with each other, by comparing
how these predicates contradict to each other, we can find the cause for the assertion failed,
and map it back to the real code.

Using the notion of causality introduced by Halpern and Pearl, Beer et al. [36] intro-
duced an approach for explaining LTL counterexamples and was implemented as a feature
in the IBM formal verification platform RuleBase PE. Given the error trace, the causes for
the violation are highlighted visually as red dots on the error trace itself. The Question asked
was : what values of signals on the trace cause it to falsify the specification? Following the
definition of Halpern and Pearl, they refer to such set of pairs of state-variable as bottom-
valued pairs whose values should be switched to make such state-variable pair critical, the
pair is critical if changing the value of the variable in this state no longer produces a coun-
terexample. This pair represents the cause for the first failure of the LTL formula given the
error trace, where they argue that the first failure is the most relevant to the user. Neverthe-
less, the algorithm proposed computes an over-approximation of set of causes not just the
first cause that occurred. Many Other works also provided error explanation methods in the
context of C programs [171, 185, 186].

3.4.2 Comparing Counterexamples with Successful Runs

This is the most adopted method for error explanation and was successfully featured in
many model checkers such as SLAM and PathFinder. Groce et al. [101] have proposed an
approach for counterexamples explanation based on computing a set of faulty runs called
negatives, in which the counterexample is included, and comparing it to a set of correct runs
called positives. Analysing the common features and differences could lead to get a useful
diagnostic information. Their algorithms were implemented in the JAVA pathfinder model
checker. Based on Lewis counterfactual theory of causality [140] and distance metrics, the
authors in [100] have proposed a semi-automated approach for isolating errors in ANSI C

programs, by considering the alternative worlds as programs executions and the events as

28 Counterexamples in Model Checking

propositions about those executions. The approach relies on finding causal dependencies
between predicates of a program. A predicate a is causally dependent on b given the faulty
execution iff executions in which the removal of a cause a also removes the effect b are
more likely than execution where a and b do not appear together. For finding these traces,
which are as close as possible to the faulty one, they employed distance metric. In [45] they
extended the original approach for comparing a counterexample with closest successful run
through combining distance metric with predicate abstraction in order to generate expla-
nations for abstract counterexamples. They argue that even for abstract counterexample,
abstract state-space makes the explanation more informative. Renieris and Reiss [154] also
introduced a method based on distance metric to select the closest correct runs to the faulty

one and they provided a quantitative method for evaluating their methods.

Ball et al. [34] proposed an effective approach that is currently featured in SLAM model
checker. Their method is based on the same principle of finding successful runs to be com-
pared with the counterexample. The interesting difference here is that it generates error
trace per error cause, which makes the diagnostic more easier since there will not be causal
dependencies in the traces generated. It is clear that this method will require the invocation
of the model checker each time a cause for the error is found. Finally, the causes are reported
as erroneous transitions that do not occur in any correct trace. Copty et al. [63] proposed a
framework for debugging counterexamples as they refer to it as counterexample Wizard in
the context of symbolic LTL. The technique employed three main capabilities: multi-value
counterexample annotation, constraint-based debugging, and multiple counterexample gen-
eration. But in contrast to the work by Ball et all, the model checker is not invoked each time

an error cause is found, but instead it gets all the data needed together to start the analysis.

While all of these works addressed safety properties, Kumazawa and Tamai [134] at-
tended to explain errors for liveness properties that involve more computational complexity.
For that reason, the counterexample is represented as an infinite trace and not a finite one,
and the witnesses to be compared with this counterexample are infinite as well. The method
also employee shortest paths algorithms. Many similar works for counterexamples analysis
have been done [62, 70, 89, 103, 149, 163-165].

3.5 Counterexample Guided Abstraction Refinement (CEGAR) 29

3.5 Counterexample Guided Abstraction Refinement (CE-
GAR)

The main challenge in model checking is the state explosion problem. Dealing with this
issue is in the heart of model checking, and was addressed at the beginning of the model
checking and still. Many methods were proposed to tackle this issue, the most famous are:
symbolic algorithms, partial order reduction, Bounded Model Checking (BMC)and abstrac-
tion. Among these techniques, abstraction is considered as the most general and flexible for
handling the state explosion problem [54]. Abstraction is about hiding or simplifying some
details about the system to be verified, even removing some parts from it that are considered
irrelevant for the property under consideration. The central idea is that verifying simplified
or abstract model is more efficient than the entire model. Evidently, this abstraction has
a price which is losing some information, and the best abstraction methods are the ones
which control this loss of information. Over-approximation and under-approximation are
two main key concepts for that problem. There were many abstraction methods in the liter-
ature [65, 99, 142] , where the last one is widely famous and was adopted in the symbolic
model checker NuSMV.

Given the possible loss of information caused by the abstraction, inventing some refine-
ments methods of the abstract model is necessary. The most known method for abstraction
is a Counterexample-Guided Abstraction Refinement (CEGAR) proposed by Clarke et al.
[54] as an extension of the original one [55]. In this approach, the counterexample plays the
crucial role for finding the right abstract model. The process of CEGAR consists of three
main steps: The first is to generate an abstract model using one of the abstractions tech-
niques [46, 54, 61] given a formula ¢. The second step is about checking the satisfaction of
@, if it is satisfied then the model checker stops and returns that the concrete or the original
model satisfies the formula, if it is not satisfied, a counterexample will be generated. The
counterexample generated is in the abstract model, so we have to check if it is also a coun-
terexample in the concert model, and thus the concert model does not satisfy the property ¢.
Otherwise, the counterexample is called a spurious and the abstraction must be carried out
based on this counterexample. The final step is to refine the model until no spurious coun-
terexample is found. This is how the technique gets its name, refining the abstract model
using the spurious counterexample.

In the literature we find many extensions for CEGAR depending on the type of predi-
cates and application domains: Large program executions [132], Non-Disjunctive abstrac-
tions [143], Propositional Circumscription [123]. The CEGAR technique itself has been

30 Counterexamples in Model Checking

Model M and a
Specification @

Abstract Model
AM) AlM)EP

Model Checking Sati‘;;:im

Generating Abstract
Model

AM)E @ l

‘ Counterexample C |

C

Cisnot
Spurious

Cis spurious

, False
Counterexample

Refinemen Spurious Check f——

Fig. 3.1 Counterexample Guided Abstraction Refinement Process

used to find bugs in complex and large systems [38]. The idea is based on gathering and
saving information during the abstract model checking process in order to generate short
counterexamples in the case of the failure. This is could be helpful for large models that
make generating counterexamples using standard BMS intractable. CEGAR currently is
implemented in many tools such as NuSMV[15], SLAM and BLAST][2].

3.6 Counterexamples for Test Cases Generation

Counterexample generation gives the opportunity for model checking to be adopted and
used in different domains, one of the most domains in which the model checking has been
adapted is fest cases generation . Roughly speaking, testing is an automating method used
to verify the quality of software. When we use model checking to generate test cases,
this is called model-based testing. The central idea about using model checking for testing
[44, 86] is about interpreting counterexamples as test cases, and then test data and some
expected results are extracted from these tests using such execution framework. Since the
goal of counterexamples is to help the designer to find the source of the error given some
specification, thus they are very useful as test cases [93].

A test describes the behaviour of the test case intended: the final state, the states that
should be traversed to reach the final state. The test purpose is specified in temporal logic
and then converted to what is called a never-claim by negation; to assert that the test purpose
never becomes true. So, the counterexample generated after the verification process will de-
scribe how the never-claim is violated, which a description of how test purpose is fulfilled.
Many approaches for creating never-claims based on coverage criteria (called "trap prop-
erties")[94] are proposed. Coverage criteria aims to find how such a system is exercised

given a specification in order to get the states that were not traversed during the test; in this

3.7 Tools 31

Model

OO
Q—Q Q)

O

» Model Checker —_—

Test Cases

G(a->Xlb)
G(b->X1)
G(c->xld)

Trap Properties

Fig. 3.2 Coverage based test case generation [93]

context we call this a specification a test suit. With regard to "trap properties", we find the
work of Gargantini and Heitmeyer that addressed the coverage of SCR Specifications [94],
the work of Heimdahl et al. that addressed the coverage of transition systems globally [111],
the coverage of Control and Data Flow by Hong and Lee [120] and the Coverage of Abstract
State Machines [95]. These approaches and other different than coverage-based approaches
including requirements-based testing [85] and Mutation-based [21] are well studied in [42].
[92] proposed several effective techniques to improve the quality of the test cases generated
in model checking-based testing, especially requirements based testing, and apply them on

different types of properties in many industrial case studies.

3.7 Tools

Practically, all successful model checkers are able to output counterexamples in varying
formats [51]. In this section we will try to survey the tools supporting counterexample
generation and study their effectiveness.

Berkeley Lazy Abstraction Software Verification Tool (BLAST) [2] is a software model
checking tool for C programs. BLAST has the ability to generate counterexamples and fur-
thermore it employed the CEGAR for the verification. BLAST it is not just a CEGAR-based
model checker but also can be used for generating test cases. BLAST shows promising re-
sults with safety properties of programs with medium size.

CBMC [3] is well known Bounded Model Checker for Ainci-C and C++ programs.
CBMC performs symbolic simulation on the programs and employees a SAT solver in the
verification procedure, when the specification is falsified, a counterexample in the form of
states with variables valuation leading to these states is rendered to the user.

JavaPathfinder [11] is a famous software model checking tool for Java programs. Java-

Pathfinder is an effective virtual machin-based tool that verifies the program along all the

32 Counterexamples in Model Checking

possible executions. Due to its ability of dealing with most of JAVA language features be-
cause it runs on byte-code level, JavaPathfinder can generate a detailed report on the error
in case of the property is violated. Besides, the tool gives the ability to generate test cases.

SPIN [18] is a model checker mostly known for the verification of systems that ex-
hibit high interaction between processes. The systems are described using the description
language, Process Meta Language (PROMELA), and verified against properties specified in
LTL. By applying a depth-first search algorithm on the intersection product of the model and
the biichi automaton representing the LTL formula, a counterexample is generated in case
an accepted cycle is detected. SPIN offers an interactive simulator that helps to understand
the cause of the failure by showing the processes and their interactions in order.

NuSMYV [15] is a symbolic model checker that appeared as an extension of the Bi-
nary Decision Diagrams(BDD)-based model checker SMV. NuSMV includes both LTL and
CTL for specification analysis, and combines SAT and BDD techniques for the verification.
NuSMYV can deliver a counterexample in well readable way using XML format by indicat-
ing the states of the trace and the variables with their new values that cause the transitions.

UPPAAL [19] is a verification framework for real-time systems. The systems can be
modelled as networks of timed automata extended with data types and synchronisation
channels and the properties are specified using a Timed CTL(TCTL). UPPAAL can find
and generate counterexamples in highly visualisation graphic mode as message sequence
charts that indicate the events with respect to their order.

PRISM [17] is a probabilistic model checker used for the analysis of systems that ex-
hibit stochastic behaviour. The systems are described as Discrete-Time Markov Chains
(DTMCs), Continuous-Time Markov Chains (CTMCs) or Markov Decision Processes(MDPs)
using guarded command language, and verified against probabilistic properties expressed in
Probabilistic Computation Tree Logic (PCTL) and Continuous Stochastic Logic (CSL) and
can be extended with rewards. Another successful probabilistic model checker extended
with rewards is the Markov Reward Model Checker (MRMC) [13]. Although, both model
checkers have shown high effectiveness and have been applied for numerous case studies,
they lake the generation of counterexamples. Nevertheless, they have been used by recent
tools (DiPro [7] and COMICS [4]) for generating the counterexamples.

3.8 Conclusion

In this chapter, we surveyed the counterexamples in model checking from many aspects,

generation and debugging, and we have seen the usefulness of counterexamples for other

3.8 Conclusion 33

purposes like CEGAR and test cases generation. Although counterexamples have not treated
as a particular subject in the beginning of model checking, but was treated as a related
problem to fair cycle detection algorithms; in the recent years, counterexamples have been
treated as a standalone and a fundamental problem. Although the form of tree has been pro-
posed for the counterexamples of the fragment ACTL by Clarke, we see that this approach
has not been adopted in model checkers during the last years, but instead model checkers
are still based on generating linear counterexamples.

We can also see that the techniques based on counterexamples can directly benefit from
any advancement and new proposition for generating small and indicative counterexamples
in considerable time. It is not possible to cover all the issues related to counterexamples in
model checking . However, we hope that we surveyed most important issues for counterex-

amples that could stand as a good starting point for new research works in this field.

Chapter 4

Causal Analysis of Probabilistic

Counterexamples

4.1 Introduction and Related Works

Unlike the previous methods proposed for conventional model checking that generate the
counterexample as a single path ending with a bad state representing the failure, the task in
probabilistic model checking is quite different. The counterexample in probabilistic model
checking is a set of evidences or diagnostic paths that satisfy path formula and their prob-
ability mass violates the probability threshold. As it is in conventional model checking,
in probabilistic model checking the generated counterexample should be small and most
indicative to be easy for analysing. In probabilistic model checking this task is more chal-
lenging, since the counterexample consists of multiple paths.

Various approaches for probabilistic counterexample generation have been proposed.
The authors in [24, 27] introduced an approach for counterexample generation for DTMC
and CTMC against timed reachability proprieties using heuristics guided and directed ex-
plicit state space search. In complementary work [25], with the intuition that single sched-
uler makes an MDP as DTMC, they proposed an approach for counterexample generation
for MDPs based on existing methods for DTMC. They introduced more complete work in
[26] for generating counterexamples for DTMC and CTMC as what they refer to as diag-
nostic sub-graphs. Based on all the previous works, they built a tool DiPro [28] for gen-
erating indicative counterexamples for DTMC, CTMC and MDPs. These heuristic-based
algorithms showed a great efficiency in term of counterexample quality, nevertheless, the
tool DiPro implementing these algorithms takes usually a long time for producing the coun-
terexample. This tool can be jointly used with the model checkers PRISM [115] and MRMC

36 Causal Analysis of Probabilistic Counterexamples

[128] , and can render the counterexamples in text formats as well as in graphical mode.

Similar to the previous works, [105] has proposed the notion of smallest most indica-
tive counterexample that reduces to the problem of finding K shortest paths. In a weighted
digraph transformed from the DTMC model, and given initial state and the target states,
the strongest evidences that form the counterexample are selected using extensions of K-
shortest paths algorithms for an arbitrary number k. Instead of generating path-based coun-
terexamples , the authors in [179] have proposed a novel approach for DTMCs and MDPs
based on critical subsystems using SMT solvers and mixed integer linear programming.
Critical subsystem is simply a part of the model (states and transitions) that are consid-
ered relevant because of its contribution to exceeding the probability bound. The problem
has been shown that is NP-Complete. Another work always based on the notion of critical
subsystem is proposed to deliver abstract counterexamples with less number of states and
transitions using hierarchical refinement method. Based on all of these works, the authors
in [124] proposed the COMICS tool for generating the critical subsystems that induce the

counterexamples.

There are also many other works that addressed special cases for generating counterex-
amples in probabilistic model checking. In [30], the authors proposed an approach for
finding sets of evidences for bounded probabilistic LTL properties on Markov Decision
Processes (MDP) that behave differently from each other giving significant diagnostic in-
formation. While their method is also based on K-shortest path, the main contribution is
about selecting the evidences or the witnesses with respect to main five criteria cited in the
paper in addition to the high probability. While all of the previous works for counterexam-
ple generation are explicit-based, the authors in [178] proposed a symbolic method using
bounded model checking. In contrast to the previous methods, this method lakes the selec-
tion of the strongest evidences first, since the selection is performed in arbitrary order. An-
other approach for counterexample generation that uses Bounded Model Checking (BMC)
has been proposed [39]. Unlike the previous work that uses conventional SAT solvers, The
authors used a SMT-solving approach to put some constraints on the paths selected, in order
to get more abstract counterexample that consists of strongest paths. Counterexample gen-
eration for probabilistic LTL model checking has been addressed in [157] and probabilistic
CEGAR has been also addressed [113]. Comprehensive representation of the counterexam-
ples using regular expressions has been addressed in [69]. Sine regular expressions deliver
compact representations, they can help to deliver short counterexamples, besides, they are
widely known and easy for understanding, sot that they will give more benefits as a tool for

error explanation. for further details on counterexample generation in probabilistic model

4.1 Introduction and Related Works 37

checking we refer to [20].

Although most of the works presented here aim to generate counterexamples in prob-
abilistic model checking that help with debugging, we find the most interesting work and
practically helpful for debugging that of [180]. Instead of relying on the state space search
resulted from the parallel composition of the modules, this work suggests to rely directly on
the guarded command language used by the model checker, which is more likely and helpful
for debugging purpose. The authors always employee the critical subsystem technique but

to identify the smallest set of guarded commands contributing to the error.

While the research on debugging of probabilistic counterexamples is in its first stage,
in conventional model checking, many works have proposed techniques and algorithms for
discovering error causes from counterexamples, hence presenting them to the user in a com-
prehensive way. Most of these works consider the existence of successful runs or executions
to be compared with the error trace, with the assumption that the more successful execution
closed to the error trace indicates the causes of the error [34, 100, 101, 186]. Based on Lewis
counterfactual theory of causality [140] and distance metrics, the authors in [100] have pro-
posed semi-automated approach for isolating errors in ANSI C programs by considering the
alternative worlds as programs executions and the events as propositions about those execu-
tions. Unlike the previous works that require multiple executions, the work [176] introduced
a technique performed on a single concrete execution path using a weakest precondition al-
gorithm. While all of these works addressed safety properties, some of works attended to

explain errors for liveness properties that involve more computational complexity [134].

There are several works have used the definition of causality in the context of model
checking. We found the most closely related to our work that of [36, 48]. They used the
definition of causality for explaining LTL counterexamples[36], where the method proposed
was implemented as a feature in the IBM formal verification platform RuleBase PE . Un-
like addressing the question in [36] "what causes a system to falsify a specification?" In the
context of coverage [48], the question addressed was "what causes a system to satisfy spec-
ification?" In this aim, they adapted the definition of causality and its quantitative measure,
responsibility.

The definition of causality has also been used by [135]. They adopted the definition
of causality to event orders for generating fault trees from probabilistic counterexamples,
where the selection of traces forming the fault tree are restricted to some minimality condi-
tion . To do so, they proposed the event order logic to reason about boolean conditions on the
occurrence of events, where the cause of the hazard in their context is presented as a Event

Order Logic (EOL) formula, which is a conjunction of events, and the event are simply

38 Causal Analysis of Probabilistic Counterexamples

actions leading from state to another. In [90], they extended their approach by integrating
causality in explicit-state model checking algorithm to give a causal interpretation for sub-
and super-sets of execution traces, the thing that could help the designer to get a picture
about what is going on. They proved the applicability of their approach to many industrial
size PROMELA models. In [139], they aimed to extended the causality checking approach
to probabilistic counterexamples by computing the probabilities of events combination, but

they still consider the use of causality checking of qualitative PROMELA models.

From all what precedes, we find the most closely related to our work from causality
adoption perspective that of [36, 48]. They adopted the definition of causality in the same
way for the same goal, which is discovering error causes from counterexamples already gen-
erated, in addition both of our works do not consider the existence of other counterexamples
or successful runs to compare with. The main difference here is that the causality is adopted
in conventional model checking for linear counterexamples where the causes generated are
qualitative, whereas our work adopted the definition in probabilistic model checking where
the error has a quantitative aspect. From probabilistic model checking perspective, we find
the most closely related work that of [135]. While they adopted the same definition of
causality for the same aim, which is debugging probabilistic models, the main difference is
that they seek a counterexample of causal representation that could be given at the end in the
form of fault tree, rather than searching for the causes in a counterexample already gener-
ated. While both of our works are classified in the category of path-based counterexamples
according to [20], the work of [180] employees critical sub-systems which are fractions
of probabilistic models, and rely directly on the guarded command language used by the

model checkers like PRISM in order to deliver a well-understandable counterexample.

In this chapter we propose our approach for the analysis of probabilistic counterexam-
ples. To this end, we adopt the definition of causality introduced by [104] as well as the
definition of responsibility and blame [47]. We will focus on probabilistic safety properties
with upper threshold of the form P<,(¢;U¢,). The properties with lower threshold can be
easily transformed to properties with upper threshold [26, 105]. We should mention that ex-
plaining the violation of PCTL/CSL upper threshold properties reduces to the explanation of
exceeding the probability threshold over the model. Our approach does not ignore the previ-
ous approaches of generating probabilistic counterexamples, but instead it is based on them.
Our approach for error explanation is based directly on the most indicative counterexamples
[26, 28, 105]. In this chapter, two algorithms for analysing probabilistic counterexamples
are presented and applied on many case studies, the first is performed on counterexamples

for DTCMs and CTMC:s, the second is performed on counterexamples for MDPs.

4.2 Probabilistic Counterexamples 39

4.2 Probabilistic Counterexamples

The probabilistic counterexample is generated when a PCTL/CSL property is not satisfied.
The probabilistic property ¢ = P<,(¢) is refuted when the probability mass of the paths
satisfying ¢ exceeds the bound p. Therefore, a probabilistic counterexample for the property
¢ is formed by a set of paths starting at state s and satisfying the path formula ¢. We denote
these paths by Paths(sg = ¢). The counterexample can be formed of set of finite paths
where each path 6 = sps]...s, is a prefix of an infinite path from Parhs(sy = ¢) satisfying
the formula ¢. We denote these paths by FinitePaths(so = ¢).

It is clear that we can get a set of probabilistic counterexamples, noted PCX (sg = ¢),
which is a set of any combination from FinitePaths(sy = @) that their probability mass ex-
ceeds the bound p. Among all these probabilistic counterexamples, we are interested by the
most indicative one. The most indicative counterexample is minimal counterexample (has
the least number of paths from FinitePaths(so |= ¢)) and its probability mass is the high-
est among all other minimal counterexamples. We denote the most indicative probabilistic
counterexample by MIPCX (so = ¢). We should note that the most indicative probabilistic

counterexample may not be unique.

Lemma 4.2.1. Let MIPCX (so = ¢) be a most indicative probabilistic counterexample. Ev-
ery finite path o € MIPCX (so |= ¢) is critical. Which means Vo : MIPCX (so = ¢) — o
(removing any path 6 from MIPCX (s |= ¢) will render the result not a counterexample.

For the counterexample to have high probability, it should consist of paths that carry
high probabilities from FinitePaths(syg = ¢). The path ¢ having the highest probability
over all these paths is called strongest path and is defined as follows: for every path ¢’ €
FinitePaths(sy = ¢) : P(0) > P(0’). The strongest path also may not be unique.

Lemma 4.2.2. A most indicative probabilistic counterexample MIPCX (so = ¢) contains at
least one strongest path o € FinitePaths(so |= ¢).

Lemma 4.2.3. For every path 6 € MIPCX (so = ¢) on which the property ¢; U, (¢1U="¢,)
is satisfied, the right state sub-formula (¢,) is satisfied in the last state of ©.

Example 1 Let us consider the example of DTMC shown in 4.1 and the property
P-o5(¢), where @ = (aV b)U(c Ad). The property above is violated in this model (so =
P 5(¢)), since there exists a set of paths satisfying ¢ whose probability mass is higher
than the probability bound (0.5). Any combination from FinitePaths(sy = ¢) having proba-
bility mass higher than 0.5, is a valid counterexample including the whole set. For instance,

we can find three counterexamples:

40 Causal Analysis of Probabilistic Counterexamples

{a} {b,e} {e.d}
.f"- hY N N

0.5 » 52 ,: 0.4 ,;\ s3 |

Fig. 4.1 A DTMC

P(CX1) = P({s051,505253, 50525453, 50525455, 505455 })
=0.254+0.2+0.0940.154+0.12 =0.81

P(CX3) = P({s051,50525455,505455 })

=0.25+0.154+0.12=0.52

P(CX3) = P({s0s1,505253, 50525455 })
=0.25+02+4+0.15=0.6

The last probabilistic counterexample is the most indicative since it is minimal and its
probability is higher than the other minimal counterexample CX,,P(CX3) = 0.6 > P(CX3).
The strongest path is sos1, which is included in the most indicative probabilistic counterex-

ample.

4.3 Causality and Responsibility for Probabilistic Coun-

terexamples

For PCTL/CSL properties of the form ¢ = P<,(¢) explaining the violation reduces to the
explanation of exceeding the probability bound over the DTMC/CTMC model. Therefore,
the question of ““ what labelling and/or probability values in the counterexample cause the
system to falsify a specification ” reduces to the question: ““ what labelling and/or probability

values in the counterexample cause the exceeding of probability bound over the model .

4.3 Causality and Responsibility for Probabilistic Counterexamples 41

With respect to the definition of causality by Halpern and Pearl, the causality model is
defined by a set of exogenous variables U, set of endogenous variables V and set of functions

F. We can adopt this definition to the most indicative counterexample as follows.

Definition 4.3.1. (Causality Model) A causality model for the most indicative probabilistic
counterexample MIPCX (so = ¢) is a tuple M = (U,V, F), where the set U is represented
by a context variable; its value u represents a state s €EMIPCX (so = ¢). V is a set of atomic
propositions and Boolean formulas. F associates with every variable V; € V a truth function
fv, that determines the value of V; (0 or 1), given a state s and the values of other variables
mV.

For example, fyir(s,p = 1,r =1) =1 where p and r are atomic propositions, and
s is state representing a context. The causal influence is modelled by the transitions in
MIPCX (so = 9).

Letus denote by MI1PCX S7X/<_7) (50 = ¢) the set of finite paths resulted from MIPCX (so =
¢) by switching the value of a variable X € V in a state s.

Definition 4.3.2. (Criticality) Consider a counterexample MIPCX (so = ¢) for a proba-
bilistic formula ¢ =P<,(¢), a state s € MIPCX (so = ¢) and a variable X € V has a value
x € {0,1} in 5. We say that a pair (s,X = x) is critical for the violation of ¢ =P<,(¢@), if
MIPCX(S;_?) (s0 = ¢) is not a valid counterexample for ¢ =P<,(¢).

That is, for the probabilistic counterexample MIPCX (s = ¢), we say that the value of a
variable X is critical for the violation of ¢ =P<,(¢) in a state s, if changing the value of X
in this state renders the result not a counterexample. Following the semantics of PCTL and
the definition of counterexamples in the previous section, it is evident that each critical pair
(s,X = x) for the violation of probabilistic formula ¢ =P, (@) is in the first place a critical
pair for the satisfaction of path formula ¢ in such set of paths from MIPCX (sy = ¢). Since

MIPCX (s = ¢) is minimal and following lemma 4.2.1, we can give the following lemma.

Lemma 4.3.1. For every path 6 € MIPCX (so = @) , each critical pair (s,X = x) for the

satisfaction of ¢ on o is critical for the violation of ¢ =P<,(¢).

Definition 4.3.3. (Actual Cause) Consider a counterexample MIPCX (so = ¢) for a prob-
abilistic formula ¢ = P<,(¢) and a variable X € V. We say that (s,X = x) is a cause for the
violation of ¢ =P<, (@), if (s,X = x) is critical , or there exists a subset of variables W of

V such that switching their values in s makes (s,X = x) critical.

Thus, in our setting, we can refer to a cause as a pair (s,X = x) where X is an atomic

proposition has the value 1 in s if X € L(s), and it has the value 0 otherwise. (s,X = x) is

42 Causal Analysis of Probabilistic Counterexamples

said to be cause, if it is critical, or it can be made critical by switching the values of set of

variables W in s.

Definition 4.3.4. (Responsibility) Consider a counterexample MIPCX (s = ¢) for a prob-
abilistic formula ¢ = P—,(¢) and a variable X € V. The degree of responsibility of a cause
(s,X = x) for the violation of ¢ =P ,(¢) denoted dR(s,X =x, ¢)is 1 if (s,X =x) is critical,
and otherwise is 1/(|W|+1).

That is, we can think of responsibility as a quantitative measure that gives us diagnostic
information on (s,X = x) being a cause for the violation of ¢ = P<,(¢) , where the cause
having the highest responsibility for the violation is the critical one. We should mention
that there is a duality between PCTL property violation and fault-tolerance. The smaller the
degree of responsibility of a pair (s,X = x) , the less responsible and relevant cause to the
user. In fault-tolerance, the smaller the degree of responsibility of a component, the more
tolerant the system is to its failure.

Although the responsibility gives a good measure for the violation, which is better than
getting just qualitative causes, this measure is not yet suitable as diagnostic information in
probabilistic model checking, because we are dealing with uncertainty where the error is
quantitative (probability measure exceeds threshold P). Therefore, we have to define for
each context s its probability, so that we arrive to the definition of probabilistic causality

model.

Definition 4.3.5. (Probabilistic Causality Model) A probabilistic causality model for
MIPCX (so |= ¢) is a tuple (M, Pr), where M is the causality model and Pr is a proba-
bility function defined over the states of MIPCX (so = ¢). We define for each state s €
MIPCX (so = ¢) its probability as follows:

Pr(s) =) P(o) (4.1)

s€6|cEMIPCX (so}=0)

Thus, this probability is obtained by summing the probabilities of paths in which s is
included. Since every variable in V is a function of U, we can define the probability of each

cause (s,X = x) in the same way :
Pr(s,X =x) = Pr(s) (4.2)

That is, we have associated for each cause a probability that represents exactly the prob-

ability of a state s in which X = x . This probability simply measures the contribution of this

4.3 Causality and Responsibility for Probabilistic Counterexamples 43

cause to the violation of probabilistic formula. Given the definitions of cause responsibility

and cause probability, we arrive to the following definition.

Definition 4.3.6. (Most Responsible Cause) Cause C is a most responsible cause for the
violation of ¢ =P, (), if dR(C)Pr(C) > dR(C")Pr(C") for any cause C'.

With respect to this definition, the most responsible cause will be often a critical cause
with high probability. This definition responds to both issues for probabilistic counterex-
amples diagnosis, the conventional one that concerns the criticality of a state with respect
to a variable, and the second concerns the quantitative contribution to the error. We should
mention that the most responsible cause may not be unique. We propose an algorithm for
finding the causes and computing their responsibilities and probabilities in the following

section.
Lemma 4.3.2. A most responsible cause is not necessarily included in a strongest path.

Example 2 Consider the most indicative counterexample CX3 = {s0s1, 505253, 50525455 }
generated from the DTMC presented in Figure 4.1 against the property P<g s[(aV b)U(c A
d)].

it is possible to define a causality model for CX3, where u € {s¢,s1,52,53,54,55}, and F
can be defined over the variables in V' as follows

fr(s2) =1
fond(s2,c=0,d =0) =0

For instance, it is clear that in s,, the actual cause for the violation of P<gs[(aV b)U(c A
d)] is b = 1. The responsibility of this cause is dR(s2,b = 1) = 1 because it is critical,
switching the value of b =1 to b = 0 in s; results in falsifying ¢ on two paths, which makes
CX3 no longer a valid counterexample. Whereas in s4 dR(s4,b = 1) = 1/2, because we have
to switch the value of @ in order to make (s4,b = 1) critical. Starting from sg, (s2,b = 1) is
the most responsible cause with a probability Pr(sy,b=1) =0.240.15 = 0.35, nevertheless
it is not included in the strongest path ¢ = s¢s7.

Now, Consider the counterexample CX 1 from the previous example . Although (s1,c =
1) is critical for the satisfaction of ¢ = (aVb)U(c Ad) on the path sgsy, it is not critical for
the violation of ¢ =P<,(¢), since the set resulted from CX1 by removing sos; is a valid
counterexample. In contrast, (s1,c = 1) is critical in CX2 and CX3 since they are minimal

counterexamples.

44 Causal Analysis of Probabilistic Counterexamples

4.4 Algorithm for Computing Causes Responsibilities

This algorithm performs on counterexample generated from the tool DiPro [7], since prob-
abilistic model checkers do not offer the possibility to generate counterexamples. DiPro is a
tool used for generating counterexamples from DTMC, CTMC and MDPs models, and can
be jointly used with the model checkers PRISM [17] and MRMC [13], and can render the

counterexamples in text formats as well as in graphical form.

The algorithm gets from DiPro tool the counterexample MIPCX (so = ¢) and the prob-
abilistic formula ¢ = P<,(¢) as input, and outputs the causes with their probabilities and
responsibilities. The formula ¢ is until formula written in NNF (Negative Normal Form),

which means that negation appears just at the front of atomic propositions.

The algorithm explores the counterexample and computes the causes with their respon-
sibilities and probabilities with respect to each state s. The condition put on last state follows
Lemma 4.2.3. The main function of this algorithm is FindCauses, which is based on the
formula structure. It takes a state and state formula as input as well as the variable W, and
returns recursively the set of causes and their responsibilities. We note that when the state
formula y is of the form y; A y», both sub-formulas are essentially true at state s. But
When v is of the form y; V y», one of them could be true at s or both of them. This ac-
tually follows the causal intuition that in conjunctive scenario, both yjand y» are required
for v being satisfied, whereas in the disjunctive scenario, either y; or Y, suffices to make

v satisfied. In the two cases, we apply FindCauses to each sub-formula.

Computing the degree of responsibility follows the same intuition. We use the vari-
able W to measure the number of changes that increases when the both sub-formulas of
OR formula are satisfied, otherwise W remains unchanged. Finally, at the propositional
level, the cause will be a pair (s,a) if a € L(s) or (s,—a) otherwise, with dR computed
based on the value of W. From Example 1, For instance for disjunctive scenario, in s4 the
causes generated with their responsibilities are: {(sq,a = 1),1/2} and {(s4,b = 1),1/2}.
For conjunctive scenario, in sy, the causes generated with their responsibilities are:{ (s}, c =
1), (s;,d =1),1}.

The Algorithm computes an over-approximation set of causes , since computing the set
of causes exactly in binary causal models is NP-complete [81]. In [36], the authors intro-
duced a polynomial algorithm that approximates the set of causes for the violation of LTL
formula. The reduction from binary causal models to Boolean circuits and from Boolean
circuits to model checking as introduced in [48] proved that computing the degree of respon-

sibility for branching time formula is also NP-complete, and they provided a polynomial

4.4 Algorithm for Computing Causes Responsibilities 45

Algorithm 1. Generate Causes

1:

_
e

11:
12:
13:

»

10:

12:

14:

16:

18:

20:

22:

24:

R N o

Inputs: The counterexample MIPCX (so |= ¢), The probabilistic formula ¢ = P<,(¢)
where ¢ is of the form ¢;U¢, or (¢;U="¢,)
Outputs: Causes with their responsibilities and probabilities
Causes :=0
for each state s € MIPCX (so = ¢) do
W:=0
if s is the last state in a path o then
Causes with dR:= Causes U FindCauses(s, ¢, W)
Pr(Causes)=Y. e 5|cemipcx (s)=¢) P(O)
else
Causes with dR:= Causes U FindCauses(s, ¢, W)
Pr(Causes)=Y.cs|cemipcx (s)=¢) P(0)
end if
end for

function FINDCAUSES(s, v, W)
if y is of the form a where a € AP and a € L(s) then
return ((s,a),dR((s,a)) =1/(W +1))
end if
if v is of the form —a where a € APand a ¢ L(s) then
return ((s,—a),dR({(s,—a)) =1/(W +1))
end if
if v is of the form y; A y; then
return FindCauses(s, y1, W) U
FindCauses(s, y2, W)
end if
if y is of the form y7 V y; then
if s = y; and s = y» then
return FindCauses(s, y1, W ++) U
FindCauses(s, yo, W ++)
if s = w1 As = v, then
return FindCauses(s, yi, W)
end if
if s [75 YIAS): Y, then
return FindCauses(s, y», W)
end if
end if
end if
end function

46 Causal Analysis of Probabilistic Counterexamples

algorithm for computing responsibility for read-once Boolean formulas.

It is evident that the complexity of Algorithm 1 is polynomial in the number of states of
MIPCX (so = ¢) and the size of ¢. This follows from the fact that the left sub-formula ¢;
is evaluated at most once in each state except the last ones, in which the right sub-formula
@2 is evaluated at most once. This is much less hard than evaluating both sub-formulas at
each state of the counterexample [36]. Moreover, if the sub-formula is AND formula, it
is not necessary to be evaluated, since its satisfaction is ensured. Computing the degree of
responsibility is based on the formula structure and it is performed while evaluating the sub-
formulas, where the number of changes represented by W increases just with response to OR
formula. Thus, computing the degree of responsibility does not bring additional complexity.
In addition, computing the degree of responsibility is based only on local information at
each state, regardless of other states. This is much less hard than computing the degree of

responsibly in a state depending on the information in other states [16].

4.5 Probabilistic Counterexamples for MDPs

The PCTL property ¢ = P<,(¢) is violated on MDP, if there exists at least one scheduler
d such that the probability mass of the paths satisfying ¢ under d exceeds the bound p. A
probabilistic counterexample for the property ¢ = P<,(¢) can be formed of a set of paths
from FinitePaths,(sg) starting at state s and satisfying the path formula ¢. We denote this
set by FinitePathsg(so = ¢).

It is clear that given a scheduler d, it is possible to find a set of probabilistic counterexam-
ples under d denoted PCX(so = ¢), which is a set of any combination from FinitePaths,(so =
®), their probability mass exceeds the bound p. Like counterexample for DTMC and
CTMC, the most indicative counterexample is minimal counterexample (has the least num-
ber of paths from FinitePaths,(so = ¢)) and its probability mass is the highest among all
other minimal counterexamples. We denote the most indicative probabilistic counterexam-
ple of an MDP by MIPCX,;(so = ¢). For finding MIPCX,(so |= ¢), we have to find first the
maximizing scheduler d that induces this counterexample.

Example 3 Let us consider the example of MDP shown in Figure 4.2 and the property
P-o5(¢), where ¢ = (aVD)U(cAd).

This property is violated in this model (so ¥ P<s(9)), since there exists a scheduler
d induces a set of finite paths satisfying ¢ and their probability mass is higher than the
probability bound (0.5). Any combination from FinitePaths,(so = ¢) having probability

mass higher than 0.5, is a valid probabilistic counterexample including the whole set. We

4.5 Probabilistic Counterexamples for MDPs 47

(e)
B1L__— —» 35 I-_________\-
0.2 k\\ / B2
I 0.5
a7 B2 ~)
s 0.5 . {c,
1 ({be} ¥_ “;;
D-:_S |"/ oD \).’. a0 N4 = \\Iﬁr a2 of s
Sl \ 0.5 0.4
P \ AN __/
= 14] / \ /
{ }u_?s I.-' | /
ar ¥ | !
.'/— ™ a? B3 / B4
&) N 0.6 0.3 at”
S ol \ | ;
T 0.5 \ / 03
ol \\ Y / //’
X - Ny — ~ Y.
P A — o
|\ 57 \]: g‘: \“‘“;/541\:;/ : g'; > 55\]
‘\.,_ _H/r ’ ||"r _ﬂ_ _/ \'lll ’ \'\,_ _,/
\ {a,b |
{c,d} "-\ { ud} /,r’ {c,d}
o2

Fig. 4.2 An MDP

Example 3 Let us consider the example of MDP shown in Figure 4.2 and the property
P-o5(¢), where ¢ = (aVD)U(cNd).
This property is violated in this model (so ¥ P<os(¢)), since there exists a scheduler

d induces a set of finite paths satisfying ¢ and their probability mass is higher than the

probability bound (0.5). Any combination from FinitePaths,(so = ¢) having probability

mass higher than 0.5, is a valid probabilistic counterexample including the whole set. We

can find three counterexamples.

o o o
P(CX41) = P({so BN S1 —> 57,50 %, $) —> 53,50 2, §p =2

sS4 %s&so RN N ﬂ>S5,so 2y 54 ﬂ)g I3
=0.25+0.24+0.0940.15+0.12=0.81

P(CX 1) = P({so %, 5 2 57,50 90y 50 By 54 X 55,50 RANPLN ss})
=0.254+0.15+0.12=0.52

P(CX3) = P({so N S N 57,50 o, § 2, 53,50 %, §2 2, S4 %, ss})
=0.254+0.24+0.15=0.60

The last probabilistic counterexample is the most indicative since it is minimal and its

probability is higher than the other minimal counterexample CX;,,P(CXy3)

> P(CXdz).

48 Causal Analysis of Probabilistic Counterexamples

assignments but he also needs to know how such actions are involved, with respect to that,
the designer could fix the action in way he get the acceptable outcome. We recall that blame
considers whether an action a is to blame for an outcome ¢ under uncertainty [47].
Consider a state s from MIPCX,(so = ¢). For each action o0 € A(s), we denote by
Suc(s, &) the set of a-successors of s, where a-successor is a state s’ € S such that P(s, o, s") >
0. We should mention that for every s from MIPCX,(so |= ¢), the set A(s) is singleton. We

associate for each transition from s to s’, where s” € Suc(s, o) a probability as follow

Pg”PCX"(SO’:q))(s,s') _ Z P(o) 4.3)
(s,a,8")ec|ceMIPCX,(so=¢)

It is evident that not every transition enabled by an action « has the same presence in the
paths forming the counterexample. So this probability measures simply the contribution of
a transition to the probability of the counterexample by summing the probabilities of the

paths in which it is included.

Proposition 4.6.1. Consider a transition (s, &t,s") € MIPCX;(so = ¢),
PMIPCXa(50F=0) (-)y _ e g :
Max(Py, (s,5")) = Pr(s) iff 5" is the unique successor of s.

Proof. Pr(s) represents the sum of probabilities of paths in which s is included,

Pgl IPCX4(s0F=9) (s,s)) represents the probabilities of the paths in which the transition is in-
cluded, so it is sufficient to prove that both of them are included in the same set of paths iff
s’ is the unique successor of s. Let s’ and s” two successors of s, if s is included in N paths,
the transition (s,s”) will be included at least in one path from this set, and thus s" will be
included at most at N — 1 of paths. Hence, Pr(s) # Py <% (SO}:d))(s,s’)) if there is another

successor s” of s. O

We should mention that every transition in a probabilistic program describes how the
values of the variables evolve over time, and thus considering the transitions and their con-
tribution to the error is very important as debugging information, which makes it a required

measure for the definition of blame.

Definition 4.6.1. (Blame) Consider a counterexample MIPCX,;(so = ¢) for a probabilis-
tic formula ¢ = P<,(¢) , a state s, an action & € A(s) and a set of successors Suc(s, ¢¢).
The degree of blame for an action ¢ for the violation of ¢ = P<,(¢) in a state s denoted
dB(s,o,¢) is

dR(s', X = x,) PMIPCXalso=0) (g o1y (4.4)

s'€Suc(s,o)

4.7 Algorithm for Computing Blame 49

That is, the degree of blame dB informs us about the contribution of an action & in
state s to the violation of the probabilistic formula ¢ = P<,(¢). While responsibility
stands as a criticality measure for actual causes given well-defined states for the violation
of ¢ =P<,(¢), dB describes how an action should be blamed for this violation through
considering the probabilities assigned to the transitions leading to these states. So that, the
action more blamed for the violation will be the one more contributing to the probability of
MIPCX,(so = ¢) and leading to more critical states.

Definition 4.6.2. (Most Blame) Action o € A(s) has most blame for the violation of PCTL
property ¢ =P<, (@), if dB(s, 0, ¢) > dB(s', ', ¢) for any o’ € A(s').

Proposition 4.6.2. Consider an action o enabled at a state s, Max(dB(s, o, 9)) =
P(MIPCX,(so = 9)) iff Vo € MIPCX,(so = ¢)3(s, a,s") € o, where s’ € Suc(s,a) and s’

is critical with respect to some variable X.

That is, the maximum degree of blame of an action & enabled at a state s is equal to the
probability of the counterexample if only if for every path o from the counterexample, there
exists a transition from s to a state s’ under this action, and s’ is critical with respect to such

variable X.

Theorem 4.6.3. Let oo € A(s) and " € Suc(s,), (s/,X = x) is most responsible cause # o
has the most blame.

Proof. Let s1 and s2 be two states, a1 and a2 two actions enabled at these states
respectively. Let a1 leads to a most responsible cause C and we assume that dB(s1,al,) >
dB(s2,02,¢) . Then, for every cause C’, a2 leads to, dR(C')Pr(C’) < dR(C)Pr(C). Let C
be the unique cause 1 it leads to, let Pr(s2) > Pr(s1) and let all the causes a1 and a2 lead
to are critical. With respect to proposition 4.6.1, the probability of the transition leading to
C’ is Pr(s1), and thus with respect to the definition of blame 4.6.2, dB(s1,al,¢) will be
at most Pr(sl), which is less than Pr(s2), and since the causes 2 leads to are critical, it

contradicts a1 being the action with the most blame.

4.7 Algorithm for Computing Blame

The algorithm 2 explores the counterexample and computes the causes with their respon-
sibilities and probabilities with respect to each state s, and computes the degree of blame
for each action enabled at this state. The condition put on last state always follows lemma

4.2.3. Algorithm 2 uses the function FindCauses that takes a state and state formula as

50

Causal Analysis of Probabilistic Counterexamples

Algorithm 2 . Generate Diagnoses

1:

—
N

e S S
o 3w

N NN
N = O

D e A A S

Inputs: The counterexample MIPCX (so |= ¢), The probabilistic formula ¢ = P<,(¢)
where ¢ is of the form ¢;U¢, or (¢;U="¢,)
Outputs: Causes with responsibilities and probabilities

Actions with blame

Causes :=0
Actions :=0
for each state s € MIPCX (so = ¢) do
W:=0
if s is the last state in a path o then
Causes with dR:= Causes U FindCauses(s, ¢, W)
Pr(Causes)=Y seo|semipcx (sy=9) P(0)
else
Causes with dR:= Causes U FindCauses(s, ¢, W)

Pr(Causes)=} scs|cemipcx (so=0) P)

PP (g) = Y (5.5 coloeMIPCXy(so=9) P(O)
end if

: end for
: for each s € MIPCX (s |= ¢) do

Actions with dB:= Order(Actions U o € A(s), dB(s, &, §1) = Ly csuc(s,a) AR(s", X =
X, ¢1>Pg’”PCXd(SO):‘P)(S,S/))

: end for
: OUTPUTDIAGNOSES(Causes with dR and Pr, Actions with dB)

function OUTPUTDIAGNOSES(Causes with dR and Pr, Actions with dB)
for each actiona € A(s) from Actions do
Output ()
for each a successor s’ € Suc(s, @) do
Output Causes Ordered with respect to dR x Pr
Output (s,s)
end for
end for
end function

4.8 Experimental Results 51

input as well as the variable W, and returns recursively the set of causes and their respon-
sibilities. This algorithm computes an over-approximate set of causes, since computing the
set of causes exactly in binary causal models is NP-complete [19]. Like Algorithm 1, the
algorithm 2 is linear in the size of MIPCX,(so = ¢) and the size of ¢ , because recon-
figuring the algorithm to compute the degree of blame by adding the loop in line 18 does
not bring additional complexity since it is directly based on measures already computed,
which are te degree of responsibility of each cause and the probability of each transition
PYIPCXa(s0=9) (s,s"). Computing Py IPCXd(SO':M(s,s’) (line 15)is performed under the same
loop for computing the probabilities of causes (line 14).

At the end we present the function OUTPUTDIAGNOSES that shows the way of pre-
senting the diagnoses to te user. It gets the actions ordered with respect to dB and the causes
with dR and Pr, and outputs the diagnoses in order. We see that the output of the diagnoses
starts with the action with the most blame, and among the causes it leads to, we begin by the
most responsible cause, by indicating also the transition leading to this cause. Presenting the
transition enabled under this action is very important as a diagnostic information, because
transitions in typical probabilistic program describe how the values of the variables evolve
over time.

Example
Let us apply this algorithm on the counterexample CX3 from the previous example. The
user gets the action o first, since dB(sg,) = 0.6 is the highest, it is equal to the prob-
ability of the counterexample. From Succ(so, @), the user gets first the cause (s2,b) be-
cause it is the most responsible by computing the measure P(s3,b) X dR(s3,b) = 0.58 >
P(s1,a) X dR(sy,a,¢) = 0.41. The following action the user gets is o with degree of blame
dB(s2,00,¢) = 0.5 x (0.15) + 1 x (0.2) = 0.275 with the causes it led to {(s3,¢), (s3,d)}
and {(s4,a)},{(s4,b)} respectively, then a; with dB(s1, o) = 0.25 with the cause it led to
{(s7,¢),(s7,d)}, and finally the action oy with dB(s4,04,¢) = 0.15 with the cause it led to

{(ss,¢), (s5,d) }.

4.8 Experimental Results

4.8.1 Algorithm 1

We have implemented the first method for DTMCs and CTMCs in Java. To evaluate our
method, we use two benchmark case studies, the cyclic polling model taken from [50] and

the embedded control systems taken from [144]. All the experiments were carried out on

52 Causal Analysis of Probabilistic Counterexamples

windows XP with Intel Pentium CPU 3.2 GHz speed and 512 mb of memory.

Polling Server System The system is modelled in PRISM as a CTMC [6], where the
number of stations handled by the polling server is denoted by N. Each station has a single-
message buffer and is cyclically attended by the server. We choose the property that mea-
sures the probability of station 1 being served (s = 1) before station 2 (s = 2) where (a = 1)

denotes serving. This property is given as follows:
P=2l(s=2Na=1)U(s=1ANa=1)]

We test this property using PRISM for (N=3, N=5, N=7 and N=9). For all of these
values, PRISM renders a probability higher than 0.5. As a result, we chose the value 0.5 as
a threshold. The property can be rewritten as follows:

P<0S5[(/(s=2)Vl(a=1))U(s=1ANa=1)]

We use DiPro to generate the counterexample, which in turn uses PRISM. We have
to specify the model and the property to be verified, and then DiPro computes the coun-
terexample for violating the probability threshold. The counterexample can be rendered
graphically and stored in text format as well as XML format. The tool implements many
algorithms. In our experiments, we used the heuristic search algorithm XBF that computes
the counterexample as a diagnostic sub-graph. Our method takes the counterexample gen-
erated from DiPro and the property to be verified as parameters, and outputs the causes as
well as their probabilities and responsibilities. Detailed results of the experiments are given
in Table 4.1, Table 4.2 and Table 4.3.

The Table 4.1shows the size of the model, states and transitions, and the time required
for its construction as well as the probability estimated for each N given. The Table 4.2
contains information concerning the counterexample generation. It is evident that the num-
ber of explored vertices and explored edges while searching the counterexample is always
less than the number of states and transitions of the model. It is also evident that the number
of diagnostic paths is less than the number of solution traces. While solution traces refer
to all the paths of the diagnostic sub-graph found through exploring the model, diagnostic
paths refer just to the paths forming the counterexample.

The Table 4.3 shows the results of the algorithm execution. The first column represents
the number of causes generated from the counterexample with respect to the states, while
the second column shows the number of classes of causes probabilities. It is evident that the
number of probabilities classes is lower than the number of causes, because many causes

could share the same probability. The results show that the time taken for computing the

4.8 Experimental Results

53

Table 4.1 PRISM results: model size, time construction and probabilities.

N [States [Transitions | Time Construction(Sec) | Probability
3 36 84 0.52
5 240 800 0.043 0.53
7 | 1344 5824 0.063 0.53
9 | 6912 36864 0.09 0.54
Table 4.2 DiPro results for counterexample generation.
Time . .]
N | Explored S(’;P;sred Construc. | Solution D;tahgsnostm
vertices g tion(Sec) traces p
3 29 49 10.2 5 2
5 188 411 30.23 30 5
7 1094 3310 295.18 184 18
0 4722 16021 1240.62 533 55

causes is negligible comparing to the time of generating the counterexample. We notice that
changing N from 3 to 9 that results in augmenting the size of the diagnostic sub-graph from
29 to 4722 vertices and from 49 to 16021 edges, and increasing of causes from 11 to 367,
this results just in increasing in 1 second of execution time. The number of causes also is
very low comparing to the size of the model and the diagnostic sub-graph.

The Table 4.4 shows the actual causes and compares their presence in the counterexam-
ple. We begin by the left sub-formula of the until formula (!(s = 2)V!(a = 1). The results
show that we faced all the possible scenarios. The first: !(s = 2) is the only cause, where
a = 1 means another station is served. The second: !(a = 1) is the only cause, where s = 2
means station 2 is polled but is not served. The third: both of them !(s = 2) and !(a = 1)
are actual causes, which means other states are polled without being served. The diagnostic
information shows that the cause for (!(s = 2)V!(a = 1) being fulfilled is often due to the
absence of station 2, which means that the server is not polling it at all, whereas the case of
polling station 2 by the server (s = 2) but without being served !(a = 1) is very rare. For
the right sub-formula of the until formula, the causes are (s = 2) and (a = 1). From Table
4.3 and Table 4.4, we notice that the number of causes represents exactly the number of
diagnostic paths, because the state in which (s = 1 Aa = 1) is the last state in each diag-
nostic path. Given these results, we can easily define the number of critical causes. The
number of states involved in criticality is the number of states in which dR = 1, which are
the states in which !(s =2), !(a = 1) and (s = 1 Aa = 1) are the only causes. For example
when N=3, the number of critical causes are (3+1+2=6). The other 5 states are not involved
in criticality, because in these states !(s = 2) and !(a = 1) are both fulfilled, as a result each

cause has a responsibility 1/2.

54 Causal Analysis of Probabilistic Counterexamples

Table 4.3 Execution results of our algorithm.

N [Causes [Causes Probabilities | Execution Time(Sec)
3 I1 0.093
5 38 7 0.197
7 126 27 0.582
9 367 78 1.52

Table 4.4 Detailed results for the causes generated

I(s=2) and
(s=2)/(@R= | Na=1)/(dR= | '~ _ | s=1na=
N1 1) '1(/2) D/UER="11) R =1)
3 3 i 5 >
5 1 3 9
7 42 5 61 18
9 123 7 182 55

Embedded Control System

The Embedded control system consists of input processor (I) that reads incoming data
from three sensors (S1, S2 and S3) and then passes it to main processor (M). The processor
M processes the data and sends instructions to an output processor (O) that controls two
actuators (A1 and A2) using these instructions, (see Figure 4.3). The system is modelled in
PRISM as CTMC [9].

Any of the system’s components M, I/O, the sensors and the actuators may fail; as a

result the system is shut down. The types of failures are:

fail_sensors = (i=2/N\s < MIN_SENSORS)
fail_actuators = (0 =2 Na < MIN_ACTUAT ORS)
fail_io = (count = MAX_COUNT +1)

fail_main = (m =0)

The first failure occurs when the number of working sensors drops below 2 and the input
processor is functioning. The second failure occurs when the number of working actuators
drops below 1 and the output processor is functioning. The third failure occurs when the
number of consecutive cycles skipped exceeds a limit Max_Count. The last means that main

processor has filed. The down status of the system is labelled as:
down = fail_sensors|fail_actuators|fail_io| fail_main

For this model, we choose the PCTL property that estimates the long-run probability of

I/O failure occurring first, which is given as follows:

4.8 Experimental Results 55

g BUS)

K
B

Input Main Output | _~
Processor Processor Processor | ™.

Vi N
D

2

d
N

Fig. 4.3 Embedded controle system

P =?!(down)U fail_io]

We test this property using PRISM for (Max_Count = 2). For this value, PRISM renders
a probability equal to 0.24. We chose the value 0.2 as a threshold for this property to

generate the counterexample. Thus the property can be rewritten as follows:
P <0.2[!(down)U fail_io]

We follow the same steps indicated in the previous case study. The PRISM model con-
sists of 3478 states and 14639 transitions. For generating the counterexample, DiPro Ex-
plored 225 traces resulting in 795 vertices and 1574 edges in more than 1 minute. Finally,
the counterexample rendered consists just of 36 diagnostic paths. We pass this counterex-
ample to our algorithm for generating the causes and their probabilities and responsibilities.
Our algorithm takes less than 1 second as execution time. We notice that this time is negligi-
ble comparing to the size of the model and the time taken for computing the counterexample.

The causes generated for this property are as follows: For the right sub-formula (fail_io),
the cause generated is CO = (count = MAX_COUNT + 1). For the left sub-formula, the set

of causes for the system to not be in down state is:

Cl= —|(i = 2)
C2 = (s < MIN_SENSORS)
C3=-(0=2)

C4 = —(a < MIN_ACTUATORS)
C5 = —(count = MAX_COUNT +1)
C6 = —(m=0)

Cland C2 refer the probable causes for not failure occurring on the level of sensors,
whereas C3 and C4 refer to the probable causes for not failure occurring on the level of
actuators. The causes for not failure occurring in I/O and M are singletons, C5 and C6

respectively.

56 Causal Analysis of Probabilistic Counterexamples

The number of states from 36 diagnostic paths in which we found theses causes are
estimated to be 296 states, this is much less than the states of the model (3478). The number
of causes probabilities found are 61, ranging between 0 and 0.054. It is evident that the
number of probabilities classes (61) is lower than the number of states (296), because the
states included in the same set of paths share the same probability.

Due to the size of the counterexample, it is not possible to cite here all the pairs (state,
variable), but we can give results description concerning C1 to C6. C5 and C6 were found
to be the most responsible causes in such states, since they are singletons. For sensor and
actuators failures, we are facing disjunctive scenario, which means that either C1 or C2 can
be a cause for not sensors failure occurring. It is the same case for actuators failure with
C3 and C4. In all states, C2 (all sensors are working) and C4 (all actuators are working) are
found to be the actual causes for not sensors and actuators failures occurring respectively.
Thus, they have absolutely more responsibility than the two other causes in such states,C1
(input processor not functioning) and C3 (output processor not functioning) respectively.
For example, in the state having highest probability 0.054, we found that the only causes for
sensors failure and actuators failure are C2 and C4 respectively, thus they have 1 as a degree
of responsibility. These causes are rendered to the user as the most responsible causes, since
they are critical and they have the highest probability.

To estimate the probability of I/O failure occurring first continuously , we use the fol-

lowing CSL property:
P =2[!(down)U=T*3600%24 £4j] o)

We test this property using PRISM for (T=15, T=20, T=25 and T=30), where each value
of T represents number of days, since one time unit is one second according to PRISM
model. For these values, PRISM renders a probability Higher than 0.05. Therefore, we
chose the value 0.05 as a threshold for this property to generate the counterexample. Thus,

the property can be rewritten as follows:
P < 0.05[!(down)U=T*3600:24 £44] o]

We follow the same steps performed before with the previous property. The execution
results are given in the Table 4.5 for (Max_Count =4 and Max_Count = 8). For all values
of Max_Count and T, the execution time of our algorithm was estimated to be less than
0.1 second. For (Max_Count = 4), we notice that within 15 days the probability of I/0
failure occurring first is 0.076, as the time passes, the probability increases, until 30 days

the probability will reach 0.11. From 7" = 20, the number of : diagnostic paths, causes and

4.8 Experimental Results 57

Table 4.5 Execution results of our algorithm for T and N given.

Property’s | Diagnostic Causes highest
T N | brobability | Paths Causes | o babilities | probability
514 0076 10 57 16 0.026
8 | 0.066 8 77 13 0.026
204 0091 9 49 1 0.030
8| 0079 8 77 13 0.030
%54 0102 9 49 14 0.032
8| 0088 7 65 1 0.032
3041 0110 9 29 14 0.033
8| 0095 7 65 3 0.033

causes probabilities are the same, nevertheless, the probability of the most responsible cause
(highest probability) is not the same, which means that the counterexamples for the values
(T =20,T =25 and T = 30) are not identical. We notice also that the probability of the
most responsible cause increases as the time passes.

As same as for (Max_Count = 4), for (Max_Count = 8) the probability of I/O failure
occurring first increases as the time passes. The number of : diagnostic paths, causes and
causes probabilities are the same for (7= 15 and T = 20) and are also the same for (7" = 15
and 7' = 20). By comparing the results of Max_Count =4 and Max_Count = 8, we see that
the probability of I/O failure occurring first decreases with Max_Count = 8. This is evident,
because we gave the main processor more skipped cycles to wait before deciding that 1/0
have failed.

Although the number of diagnostic paths decreases, the number of causes rises up, which
means that these diagnostic paths are longer than those found with Max_Count = 4. Despite
the accurate change in property’s probability, number of diagnostic paths and the number
of causes with Max_Count = 8, we see that the probability of the most responsible cause is
still as the same as for Max_Count = 4 given each value of 7. We also found that the most
responsible cause for Max_Count = 4 is the same for Max_Count = 8, given each value of
T.

4.8.2 Algorithm 2

We have implemented the second method in Java. To evaluate our method, we used two
benchmark case studies, the Zeroconf Protocol [10] and CSMA/CD protocol [79]. All the
experiments were carried out on windows XP with Intel Pentium CPU 3.2 GHz speed and

512 mb of memory. DiPro employees two algorithms for generating counterexamples for

58 Causal Analysis of Probabilistic Counterexamples

Table 4.6 PRISM results for Zeroconf

Reset | K | states | transitions
true | 4 | 9683 15727
6 | 7743 11401
8 | 7743 11401
false | 4 | 59076 121265
6 | 58937 120525
8 | 58937 120525

MDPs, Eppstein’s algorithm and K* algorithm. In our experiments we use the search algo-
rithm K*. Our method takes the counterexample generated from DiPro and the property to
be verified as input, and outputs the diagnoses.

Zeroconf

The protocol is modelled in PRISM as an MDP, where the number of abstract hosts is
denoted by N, the number of probes to send is denoted by K and the probability of message
loss is denoted by loss. Each station has a single-message buffer and is cyclically attended
by the server. The buffer could store the messages that it want to send, in such cases,
messages are not relevant after reconfiguring, and thus keeping these messages can slow
down the network and making hosts reconfigure when they do not need to. We therefore
considered two different versions of the network: one where the host does not do anything
about these messages (No_Reset) and the another where the host deletes these messages
when it decides to choose a new IP address (Reset).

We chose the property that measures the probability of not choosing a fresh address by

time T. This property is given as follows:
Pmax =(l=4Nip=2)U(t > T)]

We test this property using PRISM for both types of network (Reset) and (No_Reset) for
the following values (T = 10; N = 1000;loss = 0.1 and K could vary from 4 to 8). For these
values, PRISM renders a probability higher than 0.5. As a result, we chose the value 0.5 as

a threshold. The property can be rewritten as follows:
P<0S5[l(l=4Nip=2)U(t>T)|

The PRISM results are shown in Table 4.6. We notice that the size of the models when
there is no reset is very huge comparing to reset. Despite that, DiPro renders the same
counterexample for all these different configurations with the same execution time. For
generating the counterexample, DiPro Explored 24 traces resulting in 121 vertices and 150
edges in 5 seconds for all the configurations. Finally, the counterexample rendered by DiPro

consists just of 8 diagnostic paths. The time required for generating the counterexample is

4.8 Experimental Results 59

very small with respect to the model, because DiPro rapidly succeeded to find the scheduler
that induces the counterexample through finding paths of high probabilities. In other cases,

where we have paths of small probabilities could not be the same case.

We pass this counterexample to our algorithm for generating the diagnoses. Our algo-
rithm takes less than 1 second as execution time. The causes generated for this property are
as follows: For the right sub-formula, the cause generated is singleton CO = (+ > T'). For
the left sub-formula, the set of causes for not choosing a fresh address: C1 =!(I = 4) and
C2 =!(ip =2). Notice that we are facing disjunctive scenario here, which means that either
C1 (address not in use) is the actual cause or C2 (not fresh address) or both of them. Our
results show that except the initial state where ip = 1 (IP address of an abstract host which
the concrete host is currently trying to configure), the actual cause for not choosing fresh
address within 10 time units is C1, which means that we reach states in which there is fresh

ip which the concrete host is currently trying to configure but without being used.

Concerning the actions and their blame, in the model we have two main actions causing
the non-determinism in such states which are: ’Reconfigure’ denoted rec and defend’ which
is performed by sending an ARP packet and thus this action denoted in the model by send.
For the counterexample generated given the previous property, our results show that there
is no state in which the host reconfigures, which means that the only action we are dealing
with is send. As a result, we compute the dB of send action in such states. We found that
the action has one degree of blame dB = 0.25 in each state is enabled, which means that at
each state, send has half the blame for the error, since it contributes to the half probability
of the counterexample. We should mention that this measure (0.25) refers to one of the six
probability classes found, and since all the states reached through taking send are critical
(as we mentioned before that the only cause is !(I = 4)), with respect to proposition 4.6.2,

the dB of send is as the same as the probability of the state in which it is enabled.
Carrier Sense, Multiple Access with Collision Detection (CSMA/CD)

CSMA/CD is a protocol for carrier transmission access in Ethernet networks that avoids
collision (minimising simultaneous use of the channel) when Network Interface Card (NIC)
tries to send its packet. The protocol is modelled as a probabilistic timed automata (PTA),
and can be reduced to an MDP in order to be analysed against probabilistic properties by
PRISM [5]. The model in PRISM consists of three main components or modules, the two
senders namely station 1 and station 2 respectively and the third component is the bus or
the medium. The protocol functionality is as follows: if a station has a data to send, it
listens first to the medium, in case it is free, the stations send the data, otherwise (bus is

busy), it repeats the process after random amount of time. If there is a collision , the station

60 Causal Analysis of Probabilistic Counterexamples

Table 4.7 PRISM Results for CSMA/CD

K | States | Transitions
2 | 1083 1282
4 | 7958 10594

Table 4.8 DiPro Results for CSMA/CD

K | States [Transitions | Time Construction(Sec) [Diagnostic Paths
2 | 1037 1276 6 sec 134
4 | 4222 5201 16 sec 324

attempts to retransmit the packet where the scheduling of the retransmission is determined
by a truncated binary exponential backoff process.
We chose the property that estimates the maximum probability of all stations sending

successfully before a collision with max backoff. This property is given as follows:
Pmax =?["collision_max_backof f”U”all_delivered”|

We tested this property using PRISM for the following values: N=2 and K=2, N=2 and
K=4 respectively, where N represents the number of stations and K represents the expo-
nential backoff limit. For these values, PRISM renders a probability higher than 0.7. As a

result, we chose the value 0.7 as a threshold. The property can be rewritten as follows:
P <0.7(["collision_max_backof f”U”all_delivered”]

where “collision_max_backof f” and all_delivered” are defined as follows:

collision_max_backof f” = (cdl = K&sl = 1&b = 2)|(cd2 = K&s2 = 1&b = 2),
“all_delivered” = s1 = 4&s2 =4 . The variables cd1 and cd?2 refer to collision coun-
ters for both stations where k represents the backoff limit , s1 and s2 refer to the state of the
stations where s1 = 1,52 = 1 indicate that the stations are transmitting data, and finally b
refers to the state of the bus where b = 2 indicates that there is a collision.

We use the K* algorithm employed by DiPro to generate the counterexample. Our
method takes the counterexample generated from DiPro and the property to be verified as
input, and outputs the diagnoses.

The Table 4.7 shows the size of the model by PRISM. Table 4.8 shows the states
and transition explored while searching for the counterexample and the time required for
its construction by DiPro. We notice that DiPro nearly explored all the model to generate
the counterexample for K=2, whereas for K=4, DiPro explores nearly half of the model.

For k=2, the counterexample generated consists of 134 diagnostic paths and for k=4, the

4.8 Experimental Results 61

Table 4.9 Execution results of our algorithm on CSMA/CD

K [Causes [Causes Probabilities | Execution Time(Sec)
2 616 08 3 sec
4 923 47 8 sec

counterexample generated consists of 324 diagnostic paths. We pass both counterexamples
to our algorithm for generating the diagnoses.

Table 4.9 shows the execution results of our algorithm. The second column represents
the number of causes generated from the counterexample with respect to the states, while
the third column shows the number of classes of causes probabilities. We notice that the
number of candidate causes is small comparing to the size of the model. We also notice
that the number of probabilities classes is lower than the number of causes, because many
causes could share the same probability. The results show that the time taken for computing
the causes is less than the time taken for generating the counterexample.

The causes generated for this property are as follows: For the right sub-formula, the
cause generated is a conjunct CO = (s1 = 4&s2 = 4). For the left sub-formula, the set of
causes for not facing a collision with max backoff are: C1 = =(cdl =K), C2 = (sl = 1),
C3==(b=2),C4=—(cd2=K)C5=—(s2=1).

For both values of K, our results show that there are causes that share the same proba-
bility, as we said before that the most responsible cause may not be unique. In addition, for
both values of K, the most responsible causes are the same. Among all causes, we found
that the most responsible causes for not facing collision are C1 and C4, where the state
in which these causes are found has the highest probability and it is critical with respect to
these causes. Concerning the actions and their blame, we found that the transition leading to
this critical state has highest probability among all other transitions. This transition is repre-
sented by valuations b = 2 (bus busy - collision) and s2 = 1 (station 2 is transmitting) and is
enabled by the action send? that represents sending data by station 2. This action was found
as the action having the most blame among all other actions. Given this information it would
be easy to go-back to the model, which is given in PRISM guarded command language, and
map the command which is considered more likely the responsible for exceeding the prob-
ability the given threshold. For this example precisely, given the previous information we
should begin verifying the command [send2](b = 1|b = 2)&(y1 < sigma)— > (b’ =2); in
line 40 (the complete model is available in the PRISM Benchmark Suite under MDPs sec-
tion).

The other states in which C1 and C4 are not the causes, we find that C3 is the most

62 Causal Analysis of Probabilistic Counterexamples

responsible cause. So by defining the transition leading to it, and under which action is
enabled, we could also map to the commands related and analyse all the model driven by

the weight calculated (cause probability, responsibility and blame).

4.9 Conclusion

In this chapter we have shown how the notions of causality and responsibility can be inter-
preted in the context of probabilistic counterexamples. Due to the probabilistic nature of the
causal model, we had to define for each cause its probability. Accordingly, we introduced
the notion of the most responsible cause. Following that, we first introduced an algorithm
for diagnoses generation for DTMCs and CTMC:s that acts as a guided-method to the most
responsible causes in the counterexample. The most responsible cause is considered to be
the most relevant to the user. We then extended our method to counterexamples for MDPs
by adopting the notion of blame where we showed that delivering the causes/actions with
respect to their responsibility/blame stands as a good debugging method that guides the user
through large counterexamples. The two methods were applied on many case studies, and

showed good results in term of quality and execution time.

Chapter 5

Analysing Probabilistic

Counterexamples using Regression

5.1 Introduction

This chapter introduces another approach for the diagnosis of probabilistic counterexam-
ples. This approach adopts the same definition of causality by Halpern and Pearl [104]
to reason formally about the causes, and then transforms the causality model into regres-
sion model using Structural Equation Modelling (SEM). SEM is a comprehensive analytical
method used for testing and estimating causal relationships between variables embedded in
theoretical causal model [160]. Regression analysis, path analysis and factor analysis are all
special cases of SEM. The regression model generated will quantify the effect of each cause
on the violation of the PCTL/CSL formula.

5.2 Regression Analysis

Regression analysis is a statistical technique enables us to reason about the relationship be-
tween variables. It describes the change in the value of a variable Y, namely dependent or
endogenous in response to the variation of a variable X namely independent or exogenous.
The relationship between these variables is either positive or negative. If the value of ¥
increases when the value of X rises, it is said that the relationship is positive. Conversely,
the relationship is said to be negative. One of the relationships that we can infer and statis-
tically reason about using regression analysis is causality. The causal model is build based

on assumptions or hypothesis, and then is tested against statistical data to determine how

64 Analysing Probabilistic Counterexamples using Regression

the specified model fits the data. So when it comes to causal relationships, we can use re-
gression analysis to estimate the causal effect instead of exploring the causal relationships.
The causal relationship between dependent variable ¥ and independent variable X with the
consideration of factors noise called disturbance term or error term and denoted € is given
by the linear equation

Y=BX+e (5.1)

Where X stands as a cause for Y, stands as a coefficient or weight that quantifies the
direct causal effect of X on Y. € is an error term stands for all extraneous variables, which are
assumed to be uncorrelated with X. Whereas the variables X and Y are perfectly known, the

objective behind using regression analysis is to produce an estimate of the two parameters
B and €.

5.3 Diagnostic Model

Definition 5.3.1. (Cause) Consider a counterexample MIPCX (so = ¢) for a probabilistic
formula ¢ =P<,(¢) and a variable X € V. We say that (X = x) is a cause for the violation
of ¢ =P<,(¢) in s, if (X = x) is critical , or there exists a subset of variables W of V in s

such that switching the values W of W in s makes (X = x) critical.

Thus, in this setting, we can refer to a cause as (X = x) where X is an atomic proposition
has the value 1 in s if X € L(s), and it has the value 0 otherwise. (X = x) is said to be cause
in state s, if it is critical, or it can be made critical by switching the values of set of variables
W in s.

Definition 5.3.2. (Diagnostic causality model) A Diagnostic causality model for MIPCX (s =
) is a tuple (M,CC®), where M is a causality model, and CC? is a contribution function
that assigns to each cause its contribution to the satisfaction of ¢ with respect to a path

0 € MIPCX (so |= ¢) as follows

CC°(X=x)=) P (5.2)

seo|fx(s)=x
That is, with respect to each path 6 € MIPCX(so |= ¢), we have associated to each
cause a measure that represents the sum of probabilities of reaching the states in which
X = x. We can say that X = x is a cause for the satisfaction of ¢ with respect to a path o

with a contribution CC°. So, the cause having the highest contribution will be the one found

5.4 Algorithm for Generating dataset 65

- L1 B
{a} SR {c.d}

Fig. 5.1 A DTMC

the most along the path.

Example. Consider the most indicative counterexample

CX3 = {50S2S3,SoSls4,SOS254,S051S375082S1S47505152S3}

generated from the DTMC presented in Figure 5.1 against the property P<o7(¢@), where
@ = (aVb)U(cAd). Itis possible to define a causality model for CX3, where u € {50, s1,52,53,54,55},

and F can be defined over the variables in V as follows

fa(S1):1
fera(s1,6=0,d=0)=0

For instance, it is clear that in s;, the actual cause for the satisfaction of ¢ = (aVb)U(c Ad)
is b = 1. The probability of the actual cause b = 1 in the path 6, = s¢s253 is CC?(b=1) =
0.6.

5.4 Algorithm for Generating dataset

We aim now quantify the effect of a cause X = x on the violation of ¢. To do so, we use
the regression analysis as a comprehensive technique for estimating this effect, where the
path formula ¢ will stand as a dependent variable, whereas the formula of the form X = x
will stand as an independent variable. So, the regression model will describe the behaviour
of the system by analysing the change of the probability of ¢ satisfaction with respect to
variables that are considered to be causes.

While the variables are now well defined, the remaining task is to generate the data
required for estimating the structural parameters. With respect to the definition 5.3.2 of

diagnostic causality model , we have seen that each cause X = x has a contribution CC® (X =

66 Analysing Probabilistic Counterexamples using Regression

x) with respect to each path 6 € MIPCX (so = ¢). So in our setting, P(c) will stand for
the value of ¢ and CC® (X = x) will stand for the value of X = x . As a result, the number
of data rows will be exactly the number of finite paths forming the MIPCX (so = ¢). We
present an algorithm for generating the causes and their contributions, hence constructing
the data set.

This algorithm performs on counterexample generated by the tool DiPro. The algorithm
gets from DiPro tool the counterexample MIPCX (so = ¢) and the probabilistic formula
¢ =P, (@) as input, and outputs the dataset.

The algorithm explores the counterexample path by path, and computes the causes that
will act as data variables, and computes their probabilities that will act as data values. We
notice that these two tasks are performed simultaneously. We compute CC° (X = x) of each
cause X = x found in set of states. As with the previous algorithms, The main function is
FindCauses, which is responsible doe evaluating every sub-formula, it takes a state and state

formula as input and returns recursively a set of causes.

5.5 Illustrative Example

We modelled the DTMC presented before in Figure 5.1 in Prism. Then we generate most
indicative counterexample using DiPro, which in turns uses prism for the property P<o 7(¢).

The counterexample generated is CX3 where

P(CX3) = P({505253,505154, 505254, 505153, 50525154, 50515253 })
=0.2440.16+0.12+0.08 +0.072 + 0.064

We pass the counterexample to be analyzed to our algorithm, which is implemented
in Java. It takes the counterexample generated by DiPro in XML format and returns the
dataset. The set of causes as can be generated for this counterexample using our algorithm
is as follows:C| = a,C, = b,C3 = {c,d}

These causes denoted C; stand as independent variables (X) for the regression model we
are going to build, where the until formula ¢ denoted UF stands for the dependent variable
(Y). The data values of these observed variables are given in the table 5.1.

As we see in the Table 5.1, the number of data rows represents the number of paths of
MIPCX (so = ¢), where the value of until formula UF refers to the probability of each path
P(0) and the value of cause refers to CC°(X =x) .

5.5 lustrative Example 67

Algorithm 3 Compute Dataset

1:

p— e
AW N =

»

10:

12:

14:

16:

18:

20:

22:

24:

R T

_
-

Inputs: The probabilistic formula ¢ = P<,(¢) The most indicative counterexample
MIPCX (so = 0)
Outputs: DataSet: Variables (causes) with their values (CC®)
Causes :=0
for each path 6 € MIPCX (s |= ¢) do
for each state s € 0 do
if s is the last state in a path o then
Causes:= FindCauses(s, ¢»)
CC®(Causes) = Zsec\fx (s):xP(S)
else
Causes:= FindCauses(s, ¢1)
CC?(Causes) = Zsed\fx (s):xP(s)
end if
end for

- end for

function FINDCAUSES(s, V)
if y is of the form a where a € AP and a € L(s) then
return a
end if
if v is of the form —a where a € APand a ¢ L(s) then
return —a
end if
if v is of the form y; A y; then
return FindCauses(s, y1, W) U
FindCauses(s, y»)
end if
if y is of the form y1 V y; then
if s = y; and s = y» then
return FindCauses(s, y) U
FindCauses(s, y»)
if s = yi As = v, then
return FindCauses(s, y1)
end if
if s = w1 As = y; then
return FindCauses(s, y»)
end if
end if
end if
end function

68 Analysing Probabilistic Counterexamples using Regression

Table 5.1 Counterexample data set

UF Cl C2 C3
0.24 1 0.6 0.24
0.16 1.04 0 0.16
0.12 1 0.6 0.12
0.08 1.04 0 0.08
0.072 1.03 0.6 0.072
0.064 1.04 0.4 0.064

5.6 Experimental Results

We have implemented the above method in Java. To evaluate our method, we use two
benchmark case studies, the embedded control systems taken from [9] and the cyclic polling
model taken from [6]. All the experiments were carried out on windows XP with Intel
Pentium CPU 3.2 GHz speed And 512 mb of memory.

5.6.1 Embedded Control System

We should recall here that the system consists of input processor (I) that reads incoming
data from three sensors (s1,s2,s3) and then passes it to main processor (M). The processor
M processes the data and sends instructions to an output processor (O) that controls two
actuators (Al and A2) using these instructions. Any of the system’s components M, I/O, the
sensors and the actuators may fail; as a result the system is shut down. The types of failure

are:

fail_sensors = (i=2/\s < MIN_SENSORS)
fail_actuators = (0 =2 Na < MIN_ACTUAT ORS)
fail_io = (count = MAX_COUNT +1)

fail_main = (m =0)

We use the variable Max_Count to refer to the maximum number of consecutive cycles
skipped allowed. Thus, the I/O processor will fail if the count exceeds the limit Max_Count.
The down status of the system is labelled as:

down = fail_sensors|fail_actuators|fail_io| fail_main

That is, the systems is down if any of this failures occurs. For this model, we choose
the property that estimates the probability of I/O failure occurring first, which is given as

follows:

5.6 Experimental Results 69

P =?[~(down)U fail_io]

We test this property using prism for (Max_Count = 6). For this value, prism renders a
probability equal to 0.11. We chose the value 0.1 as a threshold for this property to generate

the counterexample. Thus the property can be rewritten as follows:
P <0.1[=(down)U fail _io]

We use DiPro to generate the counterexample. We used the heuristic search algorithm
XBF that computes the counterexample as a diagnostic sub-graph. Our method takes the
counterexample generated from DiPro in XML format and the property to be verified , and
outputs the causes and their values as a dataset in Excel file. This excel file is passed to the
tool AMOS in order to generate the regression model. AMOS [1] is well-known software
for SEM that enables user to specify, confirm and refine models, by incorporating many
statistical methods.

The prism model consists of 6858 states and 28907 transitions. For generating the coun-
terexample, DiPro Explored 480 traces in about 5 minutes resulting in 1685 vertices and
3291 edges. Finally, the counterexample rendered consists just of 33 diagnostic paths. It is
evident that the number of explored vertices and explored edges while searching the coun-
terexample is always less than the number of states and the transitions of the model. Itis also
evident that the number of diagnostic paths is less than the number of solution traces. While
solution traces refer to all the paths of the diagnostic sub-graph found through exploring the
model, diagnostic paths refer just to the paths forming the counterexample.

We pass this counterexample to our algorithm for generating the dataset of causes. The
causes will be the basic sub-formulas causing the satisfaction of —(down)

U fail_io . For the right sub-formula, the cause generated is CO = (count = MAX
_COUNT +1). For the left sub-formula, the set of causes is

C1=—(i=2),C2 = ~(s < MIN_SENSORS)

C3 = (0 =2),C4 = —(a < MIN_ACTUATORS)

C5 = —(count = MAX_COUNT +1)
C6=—-(m=0)

After generating these causes with their probabilities with respect to each path as a
dataset, we found the following results: Along all paths (data rows), CO has the same prob-
ability. C2, C5 and C6 have exactly equivalent probabilities with respect to each path (data
row). This means that they always occur together. As a result, before passing the data set
to AMOS tool, CO will be ignored since its value is constant along all paths.C2, C5 and C6

70 Analysing Probabilistic Counterexamples using Regression

Estimate
UF <--- C3 000
] T A | 000
UF «=-s 2 006
UF =<-- C4 129

Fig. 5.2 Regression weights

will be regrouped into one variable named (C2), since they share the same values. Thus, the
final data set will consist of the causes C1, C2, C3, C4 and the ‘until* formula ¢ denoted
UF. For estimating the causal effect of each cause on UF, we generate the regression model
based on this data set using AMOS. The results as rendered by AMOS tool are presented in
Figure 5.2.

What concerns us more, is how to get the diagnostic information by interpreting these
weights or coefficients. We should recall that C1(input processor is not in OK state),C2(all
sensors are working) are the probable causes for not sensor failure occurring, whereas
C3(output processor is not in OK state),C4 (all actuators are working) are the causes for not
actuators failure occurring. Here we are facing a disjunctive scenario for both failures. In
fact, the weights presented above have more importance when we face a disjunctive scenario
(y1 V yn), because the designer will need to know which sub-formula is more responsible

for the satisfaction of ¢ along the paths.

The results as generated by AMOS tool shows that C4 has the highest effect where C2
has more effect than C1 and C4 has more effect than C3.By fast check on the dataset gen-
erated, these explanations are confirmed, which means that along all the paths, C2 and C4
are usually the actual causes not C1 and C3, with great notable presence for C4 comparing
to C2. These results are well conform with the previous results, that showed that the causes
C2 and C4 has more responsibility for not sensors and actuators failures occurring than C1

and C3 respectively, and C4 is the most responsible cause.

Taking just MIPCX (so = ¢) to be the causality model instead of the whole model is
due first to the nature of MIPCX (so |= @) itself; MIPCX (so = ¢) by definition covers the
most probable causes for the error, since it is consisting of paths with high probabilities.
Second, lowest probability values will have no effect on the regression model generated
since they tend to be zero. We tested this issue, by generating a counterexample for the
property P =?[—(down)U fail_io].

5.6 Experimental Results 71

That is, the counterexample will consist of all paths satisfying —(down)U
fail_io, not just the paths with high probabilities. The counterexample generated consists of
132 paths, DipRo takes more than 30 minutes for computing this counterexample. Adding
the new paths (99 paths) to the old data set and analysing it using AMOS didn’t bring

considerable change to the previous regression model generated.

5.6.2 Polling Server System

We should recall here that the system is modelled in PRISM as a CTMC, where the number
of stations handled by the polling server is denoted by N. Each station has a single-message
buffer and is cyclically attended by the server. We choose the property that measures the
probability of station 1 being served (s=1) before station 2 (s=2) where (a=1) denotes serv-

ing. This property is given as follows:
P=2l(s=2Na=1)U(s=1ANa=1)]

We test this property using PRISM for (N=3, N=5, N=7 and N=9). For all of these
values, PRISM renders a probability higher than 0.5. As a result, we chose the value 0.5 as

a threshold. The property can be rewritten as follows:
P<0S5[(/(s=2)Vl(a=1))U(s=1Na=1)]

The prism model consists of 1344 states and 5824 transitions. For generating the coun-
terexample, DiPro Explored 184 traces in about 5 minutes resulting in 1094 vertices and
3310 edges. Finally, the counterexample rendered consists just of 18 diagnostic paths. It is
evident that the number of explored vertices and explored edges while searching the coun-
terexample is always less than the number of states and the transitions of the model.

We pass this counterexample to our algorithm for generating the dataset of causes. The
causes will be the basic sub-formulas causing the satisfaction of (!(s =2)V!(a=1))U(s =
1 Aa=1) . For the right sub-formula, the cause generated is CO = (s = 1 Aa = 1). For the
left sub-formula, the set of causes is C1 =!(a = 1) and C2 =!(s =2).

After generating these causes with their contribution with respect to each path as a
dataset, we found that CO has the same probability along all paths (data rows). thus be-
fore passing the data set to AMOS tool, CO will be ignored since its value is constant along
all paths. The effect of C1 and C2 on UF is as generated by AMOS is given by the following

equation:

UF = —(0.304)C1 + (0.464)C2 (5.3)

72 Analysing Probabilistic Counterexamples using Regression

The results as rendered by AMOS show that C2 has higher effect than C1, where the
effect of C1 is negative. This means that the effect of C1 on UF increases once the paths
probabilities get lower, which means that the presence of C1 increases just with in the paths
with low probabilities. This is also well conform with the previous results that showed that

the most responsible cause is C2, which means that the server is not polling station 2 at all.

5.6.3 Comparison with Previous Method

Comparing to the two methods presented in the previous chapter, the method presented in
this chapter considers the causes as variables that have different values along the paths of
the counterexample, accordingly it studies their contribution to the violation by computing
the presence of each cause with respect to each path. We can say that the two first methods
are more effective for debugging, because they can guide the user directly to the source of
the error through getting all the information needed (Variable, state, transition, action,...),
whereas for the second method it just delivers a statistical information about the variables in-
volved in the violation, which could not indicate the source of the error directly, but it could
inform us about the behaviour of the model. For instance, finding dependence between two
variables means that the values of these variables are changing together. Besides, Statistical
information could carry imprecise results. As a conclusion, The two first methods are more
useful and appropriate for debugging of probabilistic models, but they could benefit from

the later one, for measuring the effect of variables.

5.7 Conclusion

In this chapter we proposed the use of regression analysis for error explanation by generating
a regression model corresponding to the causality model. For doing so, we have proposed
an algorithm for generating the causes as data set. We have seen that delivering the causes
for the violation of PCTL/CSL formula as a regression model stands as a good technique
for describing the effect of variables with their values on the error. Besides, we found that
the experimental results of this method on the two case studies are well conform with the
experimental results of the previous one. Hence, we conclude that both of the methods could

be used in complementary way.

Chapter 6

Analysing Probabilistic Systems using
Probabilistic Model Checking

6.1 Introduction

Probabilistic model checking has appeared as an extension of model checking for the ver-
ification of quantitative properties of stochastic systems. While this can be considered as
the main aim behind using probabilistic model checking, in recent years we notice also a
great attend to use probabilistic model checkers especially the probabilistic model checker
PRISM for the estimation of quantitative measures that help us to understand and analyse
the performance of such system. For instance in biology, many works have used proba-
bilistic model checking for modelling and analysing complex dynamic phenomena, from
biological pathways [110] and bone pathologies [35] to Codon bias [148]. In all the case
studies investigated, the modelling principle is based on modelling the evolution of individ-
ual molecules, whose rates of interaction are controlled by exponential distributions [137].
Other interesting direction for using probabilistic model checking is cloud computing en-
vironments. Johnson et al. [126] delivered probabilistic pattern modelling tool for trans-
forming such cost and resource usage queries into probabilistic properties to be analysed
by probabilistic model checkers like PRISM. This approach helps the customer of cloud
services to get better insight on the cost and the resources usage, since both of them are so
dynamic and could vary over time in stochastic manner. Other work has used probabilistic
modelling for analysing live migration of virtual machines between physical servers in a
cloud data centre [131].

With the growing importance of probabilistic model checking for the verification and

quantitative analysis of probabilistic systems, in this chapter we investigate its applicability

74 Analysing Probabilistic Systems using Probabilistic Model Checking

to two different domains. In the first section we propose a verification approach for Prob-
abilistic Complex Event Processing (Probabilistic CEP) . CEP is an Event Driven Archi-
tecture (EDA) style consists of processing different events within the distributed enterprise
system or externally attempting to discover interesting information from multiple streams
of events in timely manner. In real world, the streams of events are uncertain, which means
that is not guaranteed that an event has actually occurred , this uncertainty is due mainly to
imprecise content from the event sources (Sensors, RFID,...). As a result, Probabilistic CEP
has become an important issue in complex environments that requires a real-time reaction
given streams of probabilistic events.

In the second section, we will show how probabilistic model checking can serve as a
comprehensive technique for modelling and analysing medical treatment problems. Physi-
cians and patients are always facing critical situations where they have alternative actions,
and they have to choose the appropriate one in order to get the best outcome. So, Medical
treatment decision is a highly complex process that involves health states, preferences, the
offered options (actions) and the corresponding cost. The complexity of this process is due
to the multiple treatment decision and the accompanying risk factors, as well as that these

decisions are made under uncertainty.

6.2 Analysing Probabilistic Complex Event Processing (CEP)
Applications

Complex Event Processing (CEP) is defined by its founder Luckham as a set of tools and
techniques for analysing and controlling the complex series of interrelated events that drive
modern distributed information systems [67]. CEP is a style of Event Driven Architecture
(EDA) that refers to generation, reaction, detection and consumption of events that represent
notable changes in the state of enterprise’s activities. CEP applications are based on decou-
pling principle, which means that the events are sent or received over publish/subscribe bus,
where the event providers and event consumers are independent components.

The CEP Architecture consists of two main components, event processing engine and
adapters. The event processing engine is the core of CEP architecture; it can processes and
analyzes thousands of upcoming events from different external sources with low latency.
By correlating these events across multiple streams, the engine generates complex events to
be delivered to different destinations. Thus, the complex or high level event is generated by

aggregating set of events, these events are called the members and represent basic activities

6.2 Analysing Probabilistic Complex Event Processing (CEP) Applications 75

in the system. The engine is based on event processing language that manipulates event data
in real-time. The adapter is a software layer that interacts with stream of events enabling
the CEP engine to take place in complex environments. Regarding to event sources and

destinations, we distinguish two types of adapters, input and output adapters respectively.

CEP is considered as a promising complementary technique for many existing tech-
niques. CEP was proposed to support Business Process Management (BPM), where busi-
ness processes are continuously reacting with simple or complex events, CEP can give the
ability to discover patterns within the events cloud providing the business manager by inter-
esting information [29]. CEP was also proposed as a support Business Activity Monitoring
(BAM) to take place in complex monitoring environments [159]. CEP can also Business
Intelligence (BI) tools to extract information from continuous events not just from histori-
cal data, thus enabling real-time intelligence [138]. It has been shown that CEP can play
a crucial role in many domains, sensor and RFID networks [184], security [75],health care
systems [182].

Based on the academic research conducted at Cambridge University from the early
1990s onwards, many CEP vendors have arisen, although this was so late, just after the
beginning of the new century. streambase , Apama , Aptsoft and Coral8 were the first ven-
dors, CEP market was reinforced by the acquisition of Aptsoft by IBM, the acquisition of
Apama by Progress software, the acquisition of Sybase by SAP, and offering Oracle and
Microsoft their products, ORACLE-CEP [16] and Microsoft-Insight respectively [14].

In real world the streams of events are uncertain, this uncertainty is due mainly to im-
precise content from the event sources (Sensors, RFID,...). As a result, probabilistic CEP
has become an important issue to deal with in complex and uncertain environments. There
are two main challenges for implementing probabilistic CEP applications, the first concerns
the huge number of events incoming from different sources that we should to deal with in
real-time constraints, and the second concerns the assignment of probabilities measures to
complex events aggregated from probabilistic basic events. Probabilistic CEP has attracted
recently a great attention. Chuanfei et al. [49] proposed an infrastructure for event detection
and triggering with noisily input-data from sensors and delivered a probabilistic inference
system through using Bayesian networks. Li and Ge [141] have studied the problem of
windowed sub-sequences from probabilistic sequences of events, providing optimization
algorithms that perform in real time. Mainly focusing on RFID networks, Re et al. [154]
proposed set of algorithms and probabilistic processing engine Lahar that acts on probabilis-
tic RFID events. The authors in [177] proposed a model for representing materialized events

with baysien and sampling algorithm for correctly specifying the probabilities of complex

76 Analysing Probabilistic Systems using Probabilistic Model Checking

events from events history. The issue of uncertain data Processing is not exclusive for CEP,
but it has its origins in databases community [68].

There was before an attempt to analyse CEP applications using formal methods. The au-
thors in [87] introduced an approach based on transforming CEP rules into timed automata
to be verified using timed model checker UPPAAL through a proposed tool REX. A for-
mal verification approach was also proposed among other approaches proposed by [150] for
analysing CEP applications. They used Discreet Transition System (DS) as a verification
model and the Property Specification Language (PSL) sequences for specifying temporal
properties. So, it is evident that building probabilistic CEP applications is not a trivial task,
which makes the description of these applications and the analysis of their behavior a nec-
essary task. In this section, we propose a formal verification approach for probabilistic CEP
applications based on probabilistic model checking. To this end, we use the Probabilistic
Timed Automata (PTA) for describing the probabilistic CEP applications, and the Prob-
abilistic Timed CTL (PTCTL) logic for specifying probabilistic timed properties. While
analysing CEP applications has been investigated before and not in depth manner, to our

knowledge this is the first attempt to analyse probabilistic CEP.

6.2.1 Preliminaries and Definitions
Clocks and Zones

We denote by R the domain of time (non-negative reals), and by N the naturals. Let X
be a set of finite variables called clocks which take values from R. We denote by v(x) the
clock valuation function that assigns a value v € RX, where R* represents the set of all clock
valuations of X. For any v € Ry and ¢t € R, v+t denotes the clock valuation defined as
(v+1)(x) =v(x)+1 forall x € X.

The set of zones(clock constraints) of X, denoted Z(X) is defined by the syntax

u=x<d|c<x|x+c<y+d|-C|{V{

where x,y € X and ¢,d € N. We say that a clock valuation v satisfies a zone £, denoted
vi>(if and only if { resolves to true after substituting each clock x with v(x). Other con-
straints can be easily derived,for example, x > 1 = —(x < 2) and equality can be written as

a conjunction of constraints, for example x =2 = (x > 2 Ax < 3).

Probabilistic Timed Automata

While the formalism of clocks and zones is the same as of classical timed automata, PTA

are extended with discrete probability distributions over edges.

6.2 Analysing Probabilistic Complex Event Processing (CEP) Applications 77

Definition 6.2.1. (Probabilistic Timed Automata (PTA)) A Probabilistic Timed Automata
(PTA) is a tuple (S,So, X, inv, prob,L) where: S is a finite set of locations with sy is the initial
location. X is a finite set of clocks. inv:S — Z(x) maps to each location an invariant
condition. prob C S x Z(X) x Dis(S x 2*) is the probabilistic edge relation. L is a labelling

function that assigns to each location s € S set of atomic propositions.

A state of PTA is a pair (s, v) inS x RX such that >inv(s). Anedge of PTA is (s, g,a, p,I’,Y))
where [’ is the destination location and and Y is the set of clocks to be reset and (s, g,a, p) is
a probabilistic edge of PTA where s is source location, g is a guard, a is an action and p is
the destination distribution. In sq all clocks are initialized to zero. For any state (/,v), there
is a non-deterministic choice between making a discrete transition and letting time pass, the
transition is enabled if vi> g and probability to moving to destination location I’ resulting
in resetting the set Y of clocks equals to p(s’,Y). Letting the time passes in the current lo-
cation s is provided by the invariant condition inv(l), which is continuously satisfied while

time passes.

Probabilistic Timed CTL (PTCTL)

The Probabilistic Timed Computation Tree Logic (PTCTL) has appeared as an extension of
CTL for the specification of probabilistic timed systems. We use the PTCTL for defining
quantitative and timing properties of PTAs. As with TCTL, we use a set of clock variables
for expressing timing properties, this set is denoted by Z disjoint from X, where £ : Z — R
is a formula clock valuation that assigns values to such clocks. TPCTL state formulas are

formed according to the following grammar:

¢ = truelalClz.¢[91 A ¢2[9 [P (@)

Where a € AP is an atomic proposition, § is a zone over X UZ, z.¢ is reset quantifier, ¢
is a path formula, P is a probability threshold operator, ~€ {<,<,>,>} is a comparison
operator, and p is a probability threshold. The path formulas ¢ are formed according to the

following grammar:

@ = ¢1Ud |0 W |9 U~" 2|0y W=" 0

Where ¢1and¢@, are state formulas and n € N. As in CTL, the temporal operators (U for
strong until, W for weak (unless) until and their bounded variants) are required to be im-
mediately preceded by the operator P. The PTCTL formula is a state formula, where path

formulas only occur inside the operator P. The operator P can be seen as a quantification

78 Analysing Probabilistic Systems using Probabilistic Model Checking

J

Patterns and rules on
Predifined Event Types

Fig. 6.1 An EPA

operator for both the operators V (universal quantification) and 3 (existential quantification),
since the properties are representing quantitative requirements.

With TPCTL we can express properties such as, with a probability at least 0.95, the
system clock x does not exceed 2, before 5 time units elapse, which is expressed using
TPCTL as follows: P>q95[(x <2)U(z=15)].

6.2.2 CEP Verification Approach
Event Processing Agent (EPA) and Event Processing Network(EPN)

Any CEP application regardless of the technique employed for processing events: query-
based, rule-based,... can be described using the Event Processing Network (EPN) [150,
165]. EPN is a conceptual model that enables us to build a CEP application in reliable
way by describing the event execution flow, from source passing by processing modules
to destination. We call the modules responsible for the processing by Event Processing
Agents (EPAs). EPAs are simply a set of objects that monitor event execution to detect such
patterns. For each pattern found there is a set of actions to be performed. The EPN we use
for modelling CEP applications consists of four main components:

event producer: the entity responsible for generating the stream of events

event consumer: the final entity that consumes the outcome of EPAs

EPA : is the component that given set of input events it generates output events to be
consumed by applying such logic that must expresses time constraints.

Event Type: represents the event object structure that consists of specified attributes,
where the time-stamp is a present attribute in any event type.

The output of an EPA is either consumed by event consumer, or it feeds another EPA.

We notice that EPA is the central component in EPN, in way we can say that an EPN is a

6.2 Analysing Probabilistic Complex Event Processing (CEP) Applications 79

\'
Event
Consumer

Fig. 6.2 An EPN

set of EPAs communicating between them by exchanging events asynchronously. Roughly
speaking, EPA employ such rules that consist of two parts: pattern called the trigger and a set
of actions, by executing these rules, output events are generated. In CEP applications, EPAs
nature varies according to the engine used (rule-based, query-based,..)[67]. For example,
we can express an EPA as an Event Processing Language (EPL) query, the language used

by ESPER [8] engine for processing events engine as follows:

[insert into insert_into_def]

select select_list

from stream_def[as name] [, stream_def[as name] [,...]
[where search_conditions]

[group by grouping_expression_list]

[having grouping_search_conditions]

[output output_specification]

[order by order_by_expression_list]

[limit num_rows]

Using EPAs we can perform three functions that represent the main features of CEP
applications:

1) Filtering: In complex and dynamic systems, we can capture thousands of events and
we have to filter them to get only the interesting events in critical time. This feature is very
useful in detection and alerting systems such as fraud detection and intrusion detection.

2) Aggregation and abstraction hierachy: We say that an event is complex or high level
event, if it is generated by aggregating set of events. These events are called the members
and represent basic activities in the system. For example, by using the timestamp of each
event we can create a complex event that match specific pattern such as Event A and B occur
in either order followed by event C or D. We say that an event has an abstraction hierarchy
if it consists of sequence levels of activities and aggregations patterns in each level, where

each activity is signified by a specific event.

80 Analysing Probabilistic Systems using Probabilistic Model Checking

3) Causality: According to D. Luckham, the father of CEP [67], the Causality represents
a dependence relationship between activities in the system, “If the activity signified by the
event A had to happen in order for the activity signified by event B to happen, then A caused
B”. With CEP technology, we can consider an event as a piece of data having two essential
parameters, which are the timestamp and the causal vector. The timestamp indicates when
the event has happened, whereas the causal vector contains the identifiers of set of events
that have caused this event. Placing the causal vector in the event facilitates the tracking of

causality in complex systems.

The verification Approach

In real world the streams of events are uncertain, this uncertainty is due mainly to imprecise
content from the event sources (Sensors, RFID,...). As a result, the EPAs will not employ
just time constraints but also probabilistic thresholds. The major challenge for employing
probabilities is how EPAs derive and output complex events aggregated from probabilistic
basic events. This was the main subject of many works. Therefore, we do not consider
here this subject, but rather it reveals the way of analysing probabilistic CEP application
independently of any proposed technique in the literature.

The analysis of probabilistic CEP applications relies on the analysis of how EPAs behave
asitis intended. Therefore, we need to model the EPAs and their interaction using modelling
tool capable of dealing with time and probability and verified against properties specified
using a logic that expresses time and probability. In our approach, we use Probabilistic timed
automata (PTA) for modelling EPAs and their interaction and the PTCTL as specification
logic for specifying probabilistic real-time properties.

1) Modelling Phase

In our approach, we argue that probabilistic timed automata is the best candidate for
verifying CEP applications under uncertainty. To this end we have to show the correspon-
dence between EPN that decribes the event execution flow and PTA. Using PTA, we model
the EPAs as locations where the initial location is represented by an EPA that acts on events
generated from event producers and the final location is represented by an EPA that delivers
final events to event consumers. We associate to each location an invariant that represents
in CEP the time window defined by the EPA for such type of events to be kept. Each out
action from an EPA is enabled with respect to a guard which is specified by the EPA source
itself, where each action leads to another EPAs with new event types. That is, a probabilistic
edges from an EPA source will lead to possible EPAs with respect to the probabilistic output

events types. By moving to new EPAs, previous clocks could be reset.

6.3 Medical Treatment Analysis 81

2) Specification Phase

After modelling probabilistic CEP application as a PTA, we can use TPCTL logic to
specify temporal and probabilistic properties, to verify if the model meets the specification.
The type of properties that can be specified for probabilisic CEP are not much different from
the standard types defined by [136]. We present adapt the four standard types of properties
to probabilisic CEP applications as follows:

Reachability: The application can produce an output event with a given probability. For

example, “with probability 0.9999 or greater, a deliver alert is received by a client ”.
P>.99[trueUAllertDelivered|

Time bounded reachability: The application can produce an output event within a certain
time deadline with a given probability. For example, “with probability 0.975 or greater, a

deliver alert is received by a client within 5 time units .
P>o.99[trueU(AllertDelivered N (z < 5))]

Invariance: Certain type of events are not produced with a given probability. For exam-
ple, “ with probability 0.75 or greater, error event is never generated.

P .75[trueU—error]

We can also specify such safety propeties using PTCTL for complex events. For exam-
ple, eventC must not appear until eventA and eventB have occured with probability 0.9 or
greater.

P>09[—EventCUEventA N\ EventB]

6.3 Medical Treatment Analysis

Controlling risk factors over the course of patient’s lifetime is important for preventing some
common chronic diseases and improving life expectancy. Whereas treatment decisions are
one time decisions, in such cases, diseases involve multiple treatment decisions. For ex-
ample, patients with diabetes must carefully weigh the costs and benefits associated with
treatment of multiple risk factors including blood sugar, blood pressure, and cholesterol
control [77].

In addition to the complexity of treatments decisions, this complexity is compounded by

uncertainty of the treatment effects. As a result, it is very difficult to take all the possibilities

82 Analysing Probabilistic Systems using Probabilistic Model Checking

and choose among the offered options, the appropriate one. Therefore, we need a compre-
hensive framework in which we can investigate all the actions and compare the effect of

each of them, and here is where decision analysis methods come.

Many mathematical and computational models and their related tools have been used to
improve medical decision process. Whereas computational models such as decision trees
and artificial neural networks have been widely used in medical and biomedical domains,
the authors [147] sought to use a combination of them for the diagnosis of Neuromuscular
Diseases (NMDs). Other work has proposed an approach for medical decision support based
on the notion of knowledge integration through analysing clinico-genomic data [161] and
another proposed a hybrid framework that merges between graph b-coloring and Markov
chain models for clustering clinical pathways [82]. Markov decision processes (MDPs)
are one of these methods that know a great success as an appropriate method in medical

treatment decision.

Markov decision processes (MDPs) provide a mathematical framework for modelling
dynamic systems under uncertainty. The goal of an MDP is to provide an optimal policy,
which is a sequence of decision rules to optimize a particular criterion, such as maximizing
a total discounted reward. Based on multiple actions and rewards, a decision maker can
get the consequences of all policies and the appropriate one between them. To decide on
the optimal policy, varied solution algorithms are used, and defer according to the finite or

infinite horizon.

One of the major advantages of MDP is its flexibility, which means that at each time
epoch, there are multiple possible choices. This feature is very important for modeling the
patient’s health states. For example, organ transplantation can be modelled as an MDP,
in which the action is to either accept the organ or reject it, once a donor organ becomes
available [156]. While the patient seeks to maximize life expectancy, the health states are

assigned with such values known as quality-adjusted life years” (QALYs) [98].

With the growing importance of medical decision analysis using MDPs, we need to
invent software solutions for solving, visualizing and cost-effective analyzing of MDPs. Al-
though there are existing tools for modelling and cost effective analysis of MDPs, such as
TreeAge, according to [78], most of medical MDPs have been built with general-purpose
languages, such as C++, Matlab, or Java. In this aim, [78] developed an open source soft-
ware tool, OpenMarkov that can be used to build and evaluate MDPs in addition to Bayesian

networks and influence diagrams.

Due to the growing importance of software in the healthcare sector in general, the au-

thors [145] introduced a good survey on the computer programs used in healthcare and their

6.3 Medical Treatment Analysis 83

effect in the United Kingdom. In this section, we show how probabilistic model checking
serves as a formal and logical framework for modelling and analysing medical treatment
problems specified in MDPs. We will show the effectiveness of our approach for modelling
and especially cost-effective analysis of MDPs through showing a case study. This case
study concerns The Optimal Timing of living donor liver transplantation. We refer to the
MDP introduced by [22, 23] for formulating the problem. We use PRISM for the specifica-

tion and the analysis of the model.

6.3.1 MDPs for Medical Treatment Decision

For simple medical treatment decisions, the decision tree [77] could be used by medical de-
cision maker for representing expected utility of a patient whose health progression follows
that branch of the tree. In such cases, the path to a terminal node, such as dead could be
very complex involving much health states. This requires a large number of nodes, thus
resulting in a tree explosion [156] . Therefore, MDPs have been proved to be the appropri-
ate alternative for dealing with medical treatment problems that involve complex, stochastic
and dynamic decisions.

In standard MDPs, at each decision epoch, the sates are completely observable. How-
ever, in real world problems there are systems where the states are not entirely known or
are partially observable. For dealing with this case, the partially observed Markov deci-
sion processes (POMDPs), have been proposed as an extension of the standard MDPs. The
expressiveness of the POMDP over standard MDP makes it suitable for such medical treat-
ment decisions. The POMDP model distinguishes between states defining the dynamics of
the system (e.g. disease states) and observations, and thus, states can also be hidden and
unobservable. In addition, it allows handling investigative actions. That is, information
gathering actions or actions enabling observations (e.g. a biopsy procedure allows us to see
biopsy results) [168] . Both, the standard MDPs and POMDPs have been widely used in
medical treatment decision.

[162] addressed the problem of Optimal Time to Initiate HIV therapy. The decision
whether to intervene and initiate therapy or delay it, is still a difficult decision, because
delaying therapy from a side could bring such benefits, such as avoiding the negative side
effects and toxicities associated with the drugs. On the other hand, delaying therapy brings
such risks, including the possibility of irreversible damage to the immune system, develop-
ment of AIDS related complications and death. The authors addressed this issue through

formulating MDP model. Where states are represented by patient’s health states and the

84 Analysing Probabilistic Systems using Probabilistic Model Checking

actions taken are: initiate or delay the therapy.

Similar to this work, [76] proposed an MDP model to optimize the selection of patients
for statin therapy of hypercholesterolemia, for patients with Type 2 diabetes, using each of
these risk models. In this model, the patient can initiate the stain therapy or delay it. If
the patient chooses to initiate therapy, then the discounted value of expected rewards of all
future quality adjusted life years are obtained. On the other hand, if the patient delays the
decision then the patient moves to a new metabolic state in the next period with certain

probability and reward.

The authors [187] proposed a POMDP model for formulating the PSA-based screening
for prostate cancer problem that trades off the benefit of early detection with the cost of
screening and loss of patient quality of life, because such imperfect sensitivity of PSA tests
can result in harm to patients. This model consists of unobservable health states: no can-
cer (NC), organ-confined (OC) cancer detected, extraprostatic (EP) cancer detected, lymph
node—positive (LN) cancer detected, metastases (mets) detected, and death from prostate
cancer and all other causes (D), and others including a particular PSA interval, cancer de-
tected and treated (T) or death (D). The decisions required at each decision epoch: perform
a biopsy (B), defer biopsy and obtain a new PSA test result in epoch t + 1 (DB), or defer the
biopsy decision and PSA testing in decision epoch t + 1 (DP). The transitions probabilities
range in two kinds: the first denotes the state transition probability from health state st to st
+ 1 at epoch t given action at. The second denotes the probability of observing PSA state
' € M given the patient is in health state. Rewards also range in two kinds: the first for the
patient’s perspective, it is measured in QALYs. The second for the societal perspective, it
is measured (in dollars) as the difference in (a) the product of QALYs and a willingness to

pay factor and (b) the cost of PSA tests, biopsy, and treatment.

The authors [109] addressed the problem of managing patients with ischemic heart dis-
ease (IHD), through using POMDP model. For patients with this disease, physicians must
choose among various diagnostic procedures (such as an angiogram or one of many vari-
eties of stress test), which may be followed by a therapeutic intervention such as medication,
surgery (such as angioplasty or bypass surgery), or nothing at all. The State variables are ei-
ther observable or hidden. For example, variables representing status of the coronary artery
disease and ischemia level are hidden (not observable directly), while other state variables
like chest pain, rest EKG result and stress test result are perfectly observable. The actions
correspond to treatment or investigative procedures. Treatment actions actively change the
state of the patient to a more appropriate state; Whereas Investigative actions explore the

state of the patient, especially the related hidden process state variables. The transition

6.3 Medical Treatment Analysis 85

probabilities rang in two kinds: The first concerns the variable status and represents the
distribution of a patient being alive as a result of some procedure performed in the previous
state. The second represents a conditional distribution of coronary artery disease given a
previous state, an action and patient being alive. Concerning the rewards, there the reward
associated with a patient state only and the second stands for a cost associated with an action

(e.g. cost of performing coronary bypass surgery that includes the economic cost).

6.3.2 Preliminaries and Definitions

Markov Decision process (MDP) and optimal policy

Markov decision processes (MDPs) provide a mathematical framework for modeling
dynamic systems under uncertainty. Markov Decision Process is a Discrete-time Markov
Chain allowing the nondeterministic choice. At each time step, the process is in some state s,
and the decision maker may choose any action a available from state s. The process responds
at the next time step by randomly moving into a new state s’, and giving a corresponding
reward R,(s,s"). The probability that the process moves into its new state is influenced by
the chosen action, it is given by the state transition function.

More formally, A Markov Decision Process MDP is a quadruple (S,so,L, step) where
S is a finite set of states, sq is the initial stat, L : S — 24% is a labelling function of atomic

propositions, step : § — 2(ActxDist(s))

is a probability transition function, where Act is a set
of actions and Dist(s) represents the discrete probability distributions over S . We define a
reward structure for MDP as a pair (ry,s4) where r : S — R> is a state reward function and
rq 1 S X Act — R> 1s a transition reward function.

In MDPs, we denote a policy, scheduler or adversary by © = {m}, 1, ...} where each
7; . S — Act is a mapping from state to action. The policy 7 specifies the set of actions the
decision maker could choose in each state in order to get the future expected reward. An
optimal policy is the policy where the decider chose the actions that maximize the utility.
For computing the optimal policy many methods were proposed in the literature, the most
known are the Value iteration method [37] and policy iteration [121].

PRISM is a tool used for formal modelling and analyzing systems that exhibit ran-
dom or probabilistic behavior [115]. It supports several types of probabilistic models such
as: Discrete-time Markov chains (DTMCs), continuous-time Markov chains (CTMCs) and
Markov decision processes (MDPs). The analysis is performed on these models against
properties specified in PCTL logic [108] for DTMCs and MDPs, and Continuous Stochastic
Logic (CSL) [31, 32] for CTMCs. PRISM uses several numeric methods for model analy-

86 Analysing Probabilistic Systems using Probabilistic Model Checking

sis such as Gauss-Seidel method, Backwards Gauss-Seidel method and Jacobi method. For
MDPs and CTMCs, PRISM uses value iteration and uniformisation respectively. As addi-
tional features, PRISM offers a simulation framework for reasoning about probabilities and
rewards.

A model in PRISM consists of one or several modules that interact with each other. The

module is specified using PRISM language as set of guarded commands.
[< action >] < guard >—< updates >

Where the guard is a predicate over the variables of the system, the updates describe proba-
bilistic transitions which the module can make if the guard is true. These updates are defined

as follow:
< prob >:< atomicupdate > +...+ < prob >:< atomicupdate >

PRISM also supports rewards which are real values associated with states or transitions
of the model. Where State rewards can be specified as: g : r. The Transition rewards are
represented as: [a|g : r. According to the definitions above, the properties for a model can
be specified in PCTL using two main operators: the P operator that refers to the probability
of event occurring, and the R operator that refers to the expected value of rewards.

The objective of using MDPs is to find the optimal policy. Therefore, MDPs analysis is
performed over all the possible resolutions of non-determinism, which means that properties
using the P operator and R operator effectively reason about the minimum or maximum
probability and the minimum or maximum reward respectively over all possible resolutions
of non-determinism.

For example, the properties below compute the maximum and the minimal probability,

the maximum and the minimal reward over all resolutions, of reaching an error state:

Pmax =?[F”error”]
2[F”error”]

Pmin =1
?Ferror”

6.3.3 Case Study

To illustrate and clarify the benefits of using the probabilistic model checking for medical

treatment analysis, we investigate a case study. This case study concerns the optimal timing

6.3 Medical Treatment Analysis 87

of living-donor liver transplantation . We refer to the MDP introduced by [22, 23] for
formulating this problem.

According to [114], more than nine million people die due to internal organ failure and
one percent of this number is due to liver disease. Organ donation is the donation of an
organ of the human body, from a living or dead person to a living recipient in need for a
transplantation. Due to the insufficient supply of cadaveric organs and the considerable risks
for transplantation, living donors have become an increasing source of livers for transplan-
tation. The Liver transplantation refers to the replacement of a diseased liver with a healthy
one. One of the most open questions investigated by researchers in this area is the optimal
timing for transplantation in the aim to maximize the quality adjusted life expectancy of the

patient.

The authors [22, 23] have addressed this issue by formulating an infinite-horizon MDP
model for finding the policy that describes the health states in which the patient should wait,
and the states in which the patient should do the transplantation. In this model, the health
states of the patient are represented by the Model for End-Stage Liver Disease (MELD)
scores. MELD is a chronic liver disease severity scoring system mainly developed for pre-
dicting death within three months of surgery in patients who had undergone a transjugular
intrahepatic portosystemic shunt (TIPS). In this model, the patient can take two actions,
either “transplant” in the current decision epoch and gets expected plant reward, which rep-
resents post-transplant life days of the patient, or “wait” for another decision epoch to make
the transplantation and get a pre-transplant reward which is equal to 1 day, or he dies. The
reward in this model is assigned to actions of transplantation from each particular MELD
score, not to transplanted state, since post-transplant life expectancy depends on the pre-

transplant MELD score.

As we see in Figure 6.3, the model consists of 18 health sates, each state represents
two adjacent MELD scores, beginning with MELD [6-7] until the last state [40]. At each
sate the patient can choose the action “transplant” represented by 7', or “wait” for one more
time period, which is represented by W. By choosing the first action, the patient moves to
the state “Transplant” which is an absorbing state with probability 1 and gets the reward
that represents the expected post-transplant life days of the patient. By choosing the second
action, the patient stays at the same health sate with probability P(h|h), or he progresses
to other health sate i/ with probability P(h|h’), or he may die at the beginning of the next
decision epoch with probability P(D|h). The patient will receive a reward of 1 day for each

wait action without transplantation.

88 Analysing Probabilistic Systems using Probabilistic Model Checking

Living Donor
Transplant)

p = (if(h* 7),1,0) o = (if(h* 40),1,0)

>
\ -
P17.18
State 1 State 3 State 17 State 18
(MELD 6-7) /. MELD 10-11) (MELD 38-39) /‘¢——\ _(MELD 40)
-, -, F P
o Pa-a Pi7.17 Pig-18

Pretransplant

Fig. 6.3 MDP for Living Donor Transplantation [23]

[waite] (x=MELD1] -» P1_1 : (x'sMELD1) + P1_Z : (x'=MELDZ) + PL. D : (x'=die):

[waite] (x=MELDZ] -» P2 2 : (w'=MELDZ) + P2 1 : (x'=MELDL) + P23 : [x'=MELD3j+ D2 D : (x'=die);
[waite] [x=MELD3] -» P3_3 : (x'=MELD3) + P3_2 : (x'=MELDZ) + P3_4 : [x'=MELD4j+ DP3.D : (x'=die);
[waite] [x=MELD4] -> P4 4 : (x'=MELD4) + P4 3 : (x'=MELD3) + P4 5 : (x'=MELDS)+ P4 D : (x'=die);
[waite] (x=MELDS] -» P5_5 : (x'sMELDS) + P5_4 : (x'=MELD4) + P56 : (x'=MELDE)+ P5_D : (x'=die):
[waite] (x=MELDE] -» DE_E : (w'=MELDE) + DE_5 : (x'=MELDE) + DE_7 : [x'=MELDT)+ DE_D : (x'=die);
[waite] [x=MELD7] -» P7_7 : (x'=MELD7T) + P7 € : (x'=MELDE) + P78 : [x'=MELDEj+ DP7.D : (x'=die);
[waite] [x=MELDE] -» PE_B : (x'=MELDB) + PA_7 : (x'=MELDT) + P8_S : (x'=MELDS)+ PA_D : (x'=die):

[waite] (x=MELDS| -» P5_S : (x'sMELDS) +
[waite] [x=MELD10) -» PLO_LD : (x'=MELD10)
[waite] [x=MELD1l) -» P11 11 : (x'=MELD1l)
[waite] [x=MELD1Z) —> P12_12 : (x'=MELD1Z)
[waite] (x=MELD13) -» FL3_13 : (x'=MELD13)
[waite] (x=MELD14) -» P14 14 : (x'=MELD14)
[waite] [x=MELD15) -» PL5_L5 : (x'=MELD1S)
[waite] [x=MELD1E) -> P1é_LE : (x'=MELDI1E)
[waite] (x=MELD17) -» FL7_17 : (x'=MELD17)
[waite] (x=MELD18) -» PL8_18 : (x'=MELD18)

o
o
=3

: (x'=MELDB) + PFS_10 : (x'=MELDLO)+ PS_D : (x'=die):
P0G : {x'=MELDS) + P10 11 : (x'=MELD1L)+ P10 D : fx'=die);
P11_10 : [x'=MELDLD) PLL 12 & (x'=MELDLZ)+ PLL D : (x'=die];
P1Z_11 : [x'=MELDL1} P1Z_13 : (x'=MELD13)+ PI1Z.D : (x'=die):
F13_1Z : (x'=MELDLZ) Fl3_14 : (x'sMELDL4)+ FL3.D : (x'=die];
P14 13 : (x'=MELDL3) Pl4 15 : (x'=MELDLS)+ PL4 D : (x'=die];
P15 14 : [x'=MELDL4) PL5_16 : (x'=MELDLE)+ PL5.D : (x'=die];
P16_15 : [x'=MELDLS) P16_17 @ (x'=MELD17)+ P1E_D : (x'=die]:
F17_16 : (x'=MELDLE) FL7_18 : (x'sMELDLB)+ FL7.D : (x'=die];
PlE_17 : (x'=MELDL7) PLED : (x'=die);

o+

"
¥
+
¥
"
¥
+
¥

Fig. 6.4 “Wait” Actions

Model Construction

Using PRISM, we create a module for this MDP that consists of 20 states, [1-18] repre-
sent the MELD scores, and the two others represent the” transplant” and the” die” states.
Concerning the type of transitions, they are divided with respect to the actions taken.

For patient to take “wait”, all the transitions between health states are possible. But to
facilitate the analysis, we consider just the adjacent health states and staying at the same
health state, because this is the most common [13]. Therefore, at each health state, the
patient could remain the same health state, get sicker or improves. In addition, at each
decision epoch, patient could die from such health state, but practically, the patient could
die just as from illness states. As we see in Figure 6.4, from the state MELD?2, the patient
can remain the same state with probability P2_2, get sicker by progressing to MELD3 with
probability P2_3, improves by returning to MELD1 with probability P2_1 or he can die with

6.3 Medical Treatment Analysis

89

[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]
[transplant]

(=MELDL1)
(x=MELDZ)
(x=MELDZ)
(=MELD4)
(x=MELDS)
(x=MELDE)
(X=MELD7)
(x=MELDS)
(x=MELDS)
(x=MELD10)
(x=MELDI1L)
(x=MELD1Z)
(x=MELD13)
(x=MELD14)
(x=MELD15)
(x=MELD1E)
(x=MELD17)
(x=MELD1E)

e I S T

e e

(®'=transplant):
(x'=transplant):
(®'=transplant) ;
(x'=transplant):
(x'=transplant):
(®'=transplant) ;
(x'=transplant):
(x'=transplant):
(¥ '=transplant) :
[='=transplant):
[x'=transplant):
[®x'=transplant) ;
[='=transplant);
(x'=transplant):
[®x'=transplant) ;
[='=transplant);
(x'=transplant):
(x'=transplant) ;

Fig. 6.5 Transplantation at each time epoch

90 Analysing Probabilistic Systems using Probabilistic Model Checking

rewvards
[waite] true : 1:
[transplant] MELD=0: El1:
[transplant] MELD=1 : EZ:
[transplant] MELD=Z: ER3;
[Cransplant] MELD=3: Ed;
[transplant] MELD=4: E5;
[transplant] MELD=5 : Eo:
[transplant] MELD=£ : E7:
[transplant] MELD=T: E&:
[transplant] MELD =8: ES:»
[transplant] MELD =9: E10;
[transplant] MELD =10: Rl1l;
[transplant] MELD=11: El1Z:
[transplant] MELD=1Z: El13:;
[transplant] MELD =13: Eld;
[transplant] MELD=14: El15:;
[transplant] MELD =15: Ele:
[transplant] MELD =lg: BL17:
[transplant] MELD =17: EB18;
endrevwards

Fig. 6.6 Transplant transitions reward

probability P2_D. In this case study we use probabilities measures based on The Natural
History of MELD [12] as well as [129].

The patient can move from any health state to “transplant” state, which is an absorbing
state, by taking the action “transplant” with probability equals to 1 (Figure 6.5). We distin-
guish between the transplant actions at each time epoch, because at each state, the patient
gets different post-transplant reward (R1, R2....R18). This is in contrast to “wait” action
that gets a constant reward of 1 day (see Figure 6.6). The post-transplant rewards adopted
refer to [155].

Model Analysis

Using PRISM we can analyze MDPs, using properties with the operators P and R. By using
them, we can effectively reason on the minimum-maximum probability and the minimum-
maximum reward respectively over all possible resolutions of non-determinism. PRISM
doesn’t offer just the maximum reward value of such policy or the maximum probability,
but also offers simulation framework aiding the user to interpret the results.

For finding the optimal policy for the MDP presented, we chose the value iteration

method for solving the MDP and Linear equations Jacobi provided by PRISM. For the rest

6.3 Medical Treatment Analysis 91

4000

- 3500 T
E 3000 T
% _—q_h—_—_hh‘—'—.
X 2500
Q
5 2000
a
S 1000
w

500

MELD

Fig. 6.7 Maximum Expected Life Rewards

of the analysis, we use the same algorithms. To find the optimal policy we use the following

property:
Rmax =?[F”transplant”]

This property computes the maximum reward over all resolutions of the model for reach-
ing a transplant state. The time taken to accomplish the analysis was less than one second.
The result was 3897, 58 as a maximum expected life reward, which is obtained following
the policy of waiting until the health state MELDS8 and then make the transplantation.

For further analysis, we can track the maximum reward along the policy found. We
can get the maximum expected life rewards starting from each MELD to the final state

“transplant”, by using the following property:
Rmax =?[Ftransplant”{MELD = K }{max}|

The graph simulating this formula for MELD states as can be generated using PRISM, is
given in Figure 6.7. As we see, the maximum reward is high by starting from the first health
state (MELD 1 = 0), because it’s obvious that while the patient gets sicker, his expected life
reward goes down.

The User may also need to get informed about the minimum expected life reward start-
ing from each state. Similarly to the maximum expected life, we can compute minimum

expected life reward using the following property:
Rmin =?[Ftransplant”{MELD = K }{min}|

The graph simulating this property for MELD states is given in Figure 6.8. From the
initial state, getting minimum reward for transplantation is nearly 2000. This minimum

reward goes down when the patient gets sicker.

92 Analysing Probabilistic Systems using Probabilistic Model Checking

2000
= 1750
m
§ 1500
@ 1250 —,
; 1000
§ 750
2 500
w
250
0
0 2 4 G 8 10 12 14 16 18

MELD

Fig. 6.8 Minimum expected life rewards

078

0,50

- Pmax

getting healthier

0,00

0,0 2,5 5,0 7.5 10,0 12,58 15,0 17,5
Fig. 6.9 Probability of getting healthier

More interesting about using probabilistic model checking is that we can analyse and
simulate probabilistic properties. For example, the user may want to reason on the maximum
probabilities getting patient from health-state to another. This can be achieved by using the

following property:
Pmax =?F(MELD = N){MELD = K}]

The graph simulating this formula is given by taking the case of estimating probabilities
of returning to the first healthier state from the following sicker states (see Figure 6.9). As
we see, while the patient gets sicker, the probability of returning to the first healthier state
decreases.

Another useful example of probabilistic properties is when the user needs to reason on
the maximum probability of death, given a period of time without transplantation. This is

formulated using bounded until formula as follow:
Pmax =?trueU < days’die”]

The simulation result of this property is given in Figure 6.10. The interpretation of this
graph is so simple. The days the patient spent without transplantation, the probability of

death will increase.

6.4 Conclusion 93

- Probability of Death

Maximum probability

0 500 1000 1500 2000 2500 3000
days

Fig. 6.10 Probability of death

6.4 Conclusion

Probabilistic CEP applications have known a great success as a technological paradigm to
deal with the high processing of events in real time under uncertainty. Therefore, delivering
analysis techniques to ensure the correctness of these systems has become a great challenge.
In this chapter, we proposed a formal verification framework for probabilistic CEP based
on timed probabilistic model checking. We showed how useful is using TPCTL logic for
specifying timed probabilistic properties to analyse the behaviour of EPAs, dependently and
independently.

In this chapter, we have also illustrated the use of probabilistic model checking for
analysing MDPs in the context of medical treatment decision. We have investigated a case
study that concerns the problem of the optimal timing of living-donor liver transplantation,
and we have implemented the corresponding MDP in the model checker PRISM. We showed
its effectiveness for decision making from building models to quantitative and cost-effective
analysis. Due to its formal and logical foundation, probabilistic model checking can serve
as a good framework for modelling and analysing medical treatment problems that involve

probability and non-determinism.

Chapter 7
Conclusions

In this thesis, we surveyed the counterexamples in model checking from many aspects, but
mainly generation and debugging, and we have seen the usefulness of counterexamples for
other purposes like CEGAR and test cases generation. We have seen that the techniques
based on counterexamples can directly benefit from any advancement and new proposition
for generating small and indicative counterexamples in considerable time. It is not possible
to cover all the issues related to counterexamples in model checking . However, we hope
that we surveyed most important issues for counterexamples that could stand as a good
starting point for new research works in this field. In the future we expect to see more
works on generating counterexamples in the context of probabilistic model checking and
their analysis, and we also expect to see more works on CEGAR especially in probabilistic
model checking. Roughly speaking, the probabilistic model checking is an active area for
counterexamples. Another challenge concerning counterexamples is their visualisation to
help in debugging. In addition, we expect to see more works in other domains that adapt
model checking techniques just for the seek of using counterexamples.

Then, we showed that the principle of counterexample generation in probabilistic model
checking is completely different, where we showed that generating small and indicative
counterexamples is not enough for understanding the error, and thus counterexample analy-
sis is a necessary task. So, In the second and the main part of this thesis, we have presented
a set of novel techniques and methods for analysing counterexamples in probabilistic model
checking. The proposed methods are based on strong theoretical background of causality.
In this chapter we have shown how the notions of causality and responsibility can be inter-
preted in the context of probabilistic counterexamples. Due to the probabilistic nature of the
causal model, we had to define for each cause its probability. Accordingly, we introduced

the notion of the most responsible cause. Following that, we first introduced an algorithm

96 Conclusions

for diagnoses generation for DTMCs and CTMC:s that acts as a guided-method to the most
responsible causes in the counterexample. The most responsible cause is considered to be
the most relevant to the user. We then extended our method to counterexamples for MDPs
by adopting the notion of blame where we showed that delivering the causes/actions with
respect to their responsibility/blame stands as a good debugging method that guides the user
through large counterexamples. The two methods were applied on many case studies, and
showed good results in term of quality and execution time. All the methods proposed are
applied on many case studies from deterministic and non-deterministic systems to discrete
and continuous systems, and show promising results. Such theoretical notions like blame is

adopted for the first time in application and industrial domain.

We have also proposed another approach for analysing probabilistic counterexamples
using regression analysis. The idea was about generating a regression model corresponding
to the causality model. For doing so, we have proposed an algorithm for generating the
causes as data set. We have seen that delivering the causes for the violation of PCTL/CSL
formula as a regression model stands as a good technique for describing the effect of vari-
ables with their values on the error. Besides, we find that the experimental results of this
method on the two case studies are well conform with the experimental results of the pre-
vious one. Hence, we conclude that both of the methods could be used in complementary
way.

As future works, we plan to investigate the problem of incomplete data, which is well
known problem in regression, as well as the problem of linear dependence between variables
in the context of probabilistic counterexamples. We want also to combine between the two
approaches to reach better analysis of the counterexample. As further future work, we plan
to deliver a debugging tool that generates the diagnoses graphically. Furthermore, we aim to
integrate our methods in the model checking process itself in order to generate the diagnoses
with respect to the guarded command language used by probabilistic model checkers like
PRISM.

Debugging in probabilistic model checking is still in its first stage. In the future we
expect to see more works on debugging. We expect to see new debugging tools that base
directly on the guarded-command language of probabilistic model checkers like PRISM,

and not just use the existed tools for counterexample generation.

With the growing importance of probabilistic model checking for the verification and
quantitative analysis of probabilistic systems, in this thesis, we investigated its applicability
on two different domains. In the first section we proposed a verification approach for Proba-

bilistic Complex Event Processing (Probabilistic CEP) . The formal verification framework

97

for probabilistic CEP was based on timed probabilistic model checking. We showed how
useful is using TPCTL logic for specifying timed probabilistic properties to analyse the
behaviour of Event Processing Agents (EPAs), dependently and independently. In the sec-
ond section, we showed how probabilistic model checking can serve as a comprehensive
technique for modelling and analysing medical treatment problems. We have investigated a
case study that concerns the problem of the optimal timing of living-donor liver transplan-
tation, and we have implemented the corresponding MDP in the model checker PRISM. We
showed its effectiveness for decision making from building models to quantitative and cost-
effective analysis. Due to its formal and logical foundation, probabilistic model checking
can serve as a good framework for modelling and analysing medical treatment problems
that involve probability and non-determinism.

As future works, we aim to investigate in depth manner the constraints that should be
put on adopting the probabilistic timed automata (PTA) as a description model for CEP
application, and we aim also to investigate the extension of TPCTL for specifying more
special properties of CEP applications. For medical treatment analysis, we have seen that
we can get the optimal policy using probabilistic model checker PRISM, but PRISM cannot
offer a rich guiding for explaining the optimal policy found. Policy explanation is one of
the most open problems in literature; it was treated in general aspect as well as in medical
aspect . As future works, we aim to build a software solution at the front of PRISM tool for

helping the user in policy explanation with high visualization help.

References

[1] Amos. "http://amosdevelopment.com/download/", consulted on september 2014.
[2] Blast. http://goto.ucsd.edu/~rjhala/blast.html, consulted on september 2014.
[3] Cbmc. http://www.cprover.org/cbmc/, consulted on september 2014.

[4] Comics. http://www-i2.informatik.rwth-aachen.de/i2/623/, consulted on september
2014.

[5] Csma/cd protocol. http://www.prismmodelchecker.org/casestudies/csma.php, con-
sulted on september 2014.

[6] Cyclic server polling system. http://www.prismmodelchecker.org/casestudies/
polling.php, consulted on september 2014.

[7] Dipro. http://www.inf.uni-konstanz.de/soft/dipro/, consulted on september 2014.
[8] Esper.http://esper.codehaus.org/, consulted on september 2014.

[9] Embedded control system. http://www.prismmodelchecker.org/casestudies/
embedded.php, consulted on september 2014.

[10] Ipv4 zeroconf protocol.http://www.prismmodelchecker.org/casestudies/zeroconf.
php#time., consulted on september 2014.

[11] Javapathfinder. http://javapathfinder.sourceforge.net/, consulted on september 2014.

[12] The natural history of meld informs healthcare. http://www.users.iems.northwestern.
edu, consulted on september 2014.

[13] Mrmc. http://www.mrmc-tool.org/trac/, consulted on september 2014.

[14] Microsoft streaminsight. ttp://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx,
consulted on september 2014.

[15] Nusmv. http://nusmv.fbk.eu/, consulted on september 2014.

[16] Oracle cep. http://www.oracle.com/technetwork/middleware/
complex-event-processing/overview/index.html, consulted on september 2014.

[17] Prism. http://www.prismmodelchecker.org/, consulted on september 2014.

[18] Spin. http://spinroot.com/spin/whatispin.html,consulted on september 2014.

"http://amosdevelopment.com/download/"
http://goto.ucsd.edu/~rjhala/blast.html
http://www.cprover.org/cbmc/
http://www-i2.informatik.rwth-aachen.de/i2/623/
http://www.prismmodelchecker.org/casestudies/csma.php
http://www.prismmodelchecker.org/casestudies/polling.php
http://www.prismmodelchecker.org/casestudies/polling.php
http://www.inf.uni-konstanz.de/soft/dipro/
 http://esper.codehaus.org/
http://www.prismmodelchecker.org/casestudies/embedded.php
http://www.prismmodelchecker.org/casestudies/embedded.php
http://www.prismmodelchecker.org/casestudies/zeroconf.php#time.
http://www.prismmodelchecker.org/casestudies/zeroconf.php#time.
http://javapathfinder.sourceforge.net/
http://www.users.iems.northwestern.edu
http://www.users.iems.northwestern.edu
http://www.mrmc-tool.org/trac/
ttp://msdn.microsoft.com/en-us/sqlserver/ ee476990.aspx
http://nusmv.fbk.eu/
http://www.oracle.com/technetwork/middleware/ complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/middleware/ complex-event-processing/overview/index.html
http://www.prismmodelchecker.org/
http://spinroot.com/spin/whatispin.html

100

References

[19]
[20]

[30]

[31]

[32]

Uppaal. http://www.uppaal.org/, consulted on september 2014.

E. Abraham, B. Becker, C. Dehnert, N. Jansen, J.P Katoen, and R. Wimmer. Coun-
terexample generation for discrete-time markov models: An introductory survey. In
Formal Methods for Executable Software Models, LNCS, vol. 8483, pages 65—121.
Springer International Publishing Switzerland, 2014.

A.T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation
analysis. Technical report, School of Information and Computer Science, 1979.

O. Alagoz, L.M. Aillart, A.J. Schaefer, and M.S Roberts. The optimal timing of
livingdonor liver transplantation. Manage Science, 50(10):1420-1430, 2004.

O. Alagoz, L.M. Aillart, A.J. Schaefer, and M.S Roberts. Markov decision processes:
a tool for sequential decision making. Medical Decision Making, 30(04):474—483,
2010.

H. Aljazzar and S. Leue. Extended directed search for probabilistic timed reacha-
bility. In FORMATS, LNCS, vol. 4202, pages 33-51. Springer, Berlin, Heidelberg,
2006.

H. Aljazzar and S. Leue. Generation of counterexamples for model checking of

markov decision processes. In International Conference on Quantitative Evaluation
of Systems (QEST), pages 197-206, 2009.

H. Aljazzar and S. Leue. Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. on Software Engineer-
ing, 36(1):37-60, 2010.

H. Aljazzar, H. Hermanns, and S. Leue. Counterexamples for timed probabilistic
reachability. In FORMATS, LNCS, vol. 3829, pages 177-195. Springer, Berlin, Hei-
delberg, 2005.

H. Aljazzar, F. Leitner-Fischer, S. Leue, and D. Simeonov. Dipro - a tool for prob-
abilistic counterexample generation. In /8th International SPIN Workshop, LNCS,
vol. 6823, pages 183—187. Springer, Berlin, Heidelberg, 2011.

R. Ammon, C. Emmersberger, F. Springer, and C. Wolff. Event-driven business
process management and its practical application taking the example of dhl. In the Ist
International workshop on Complex Event Processing for the Future Internet (iCEP),

2008.

M. E. Andres, P.R. DArgenio, and P. van Rossum. Significant diagnostic counterex-
amples in probabilistic model checking. In Haifa Verification Conference, pages
129-148, 2008.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time
markov chains. ACM Transactions on Computational Logic, 1(1):162—170, 2000.

C. Baier, B. Haverkort, H. Hermanns, and J.-P Katoen. Model checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineering, 29
(7):524-541, 2003.

http://www.uppaal.org/

References 101

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

T. Ball and S.K. Rajamani. The slam project: Debugging system software via static

analysis. In ACM Symposium on the Principles of Programming Languages, pages
1-3, 2002.

T. Ball, M. Naik, and S.K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In ACM Symposium on the Principles of Programming
Languages, pages 97-105, 2003.

E. Bartocci, P. Lio, E.Merelli, and N. Paoletti. Multiple verification in computational
modeling of bone pathologies. Transactions on Computational Systems Biology, 14:
53-76, 2012.

I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Treer. Explaining counterexam-
ples using causality. Formal Methods Systems Design, 40(1):20-40, 2012.

R. Bellman. Dynamic programming. Princeton University Press.

P. Bjesse and J. Kukula. Using counterexample guided abstraction refinement to
find complex bugs. In Design, Automation and Test in European Conference and
Exhibition, pages 156—-161, 2004.

B. Braitling and R. Wimmer. Counterexample generation for markov chains using
smt-based bounded model checking. In Formal Techniques for Distributed Systems,
LNCS, vol. 6722, pages 75-89. Springer, Berlin, Heidelberg, 2011.

G. Brat, K. Havelund, S. Park, and W. Visser. Java pathfinder a second generation of
a java model checker. In Workshop on Advances in Verification, 2000.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. [EEE
Trans. Comput, 35(8):677-691, 1986.

T.A. Budd and A.S. Gopal. Program testing by specification mutation. Journal Com-
puter Languages, 10(1):63-73, 1985.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142—
170, 1992.

J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing using
model checking. In SPIN Workshop, 1996.

S. Chaki and A. Groce. Explaining abstract counterexamples. In SIGSOFT04/FSE,
pages 73-82, 2004.

P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated
abstraction refinement for model checking large state spaces using sat based conflict
analysis. In Formal Methods in Computer Aided Design(FMCAD), LNCS, vol. 2517,
pages 33-51. Springer, Berlin, Heidelberg, 2002.

H. Chockler and J. Y. Halpern. Responsibility and blame: a structural model ap-
proach. Journal of Artificial Intelligence Research (JAIR), 22(1):93-115, 2004.

102 References

[48] H. Chockler, J.Y. Halpern, and O. Kupferman. What causes a system to satisfy a
specification? ACM Transactions on Computational Logic, 9(3):1-24, 2007.

[49] X. Chuanfei, L. Shukuan, W. Lei, and Q. Jianzhong. Complex event detection in
probabilistic stream. In /2th International Asia-Pacific Web Conference, 2010.

[50] O. C.Ib and K. Trivedi. Stochastic petri net models of polling systems. IEEEJournal
on Selected Areas in Communications, 8(9):1649—-1657, 1990.

[51] E. Clarke and H. Veith. Counterexamples revisited: Principles, algorithms and appli-
cations. In In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking, LNCS,
pages 1-26. Springer, Berlin, Heidelberg, 2008.

[52] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In Proc. of the Design Au-
tomation Conference.

[53] E. Clarke, Y. Lu, s. Jha, and H. Veith. Tree-like counterexamples in model checking.
In Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science, pages
19-29, 2002.

[54] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM (JACM), 50
(5):752-794, 2003.

[55] E. M. Clarke, O. Grumberg, and D.E. Andlong. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512-1542,
1994.

[56] Edmund Clarke. The birth of model checking. In Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking, LNCS, pages 1-26. Springer, Berlin, Heidelberg, 2008.

[57] Edmund Clarke and Allen Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Logic of Programs, pages 52-71.
Springer-Verlag, 1982.

[58] E.M. Clarke, O.Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, pages 154-169, 1986.

[59] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at 1tl model checking.
Formal Methods in System Design, 10(1):47-71, 1997.

[60] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT, 1999.

[61] E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman. Sat based abstraction refinement
using ilp and machine leraning techniques. In Computer-Aided Verification (CAV),
LNCS, vol. 2404, pages 137-150. Springer, Berlin, Heidelberg, 2002.

[62] H. Cleve and A. Zeller. Locating causes of program failures. In ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE), pages 342-351, 2005.

References 103

[63] F. Copty, A. Irron, O. Weissberg, N. Kropp, and K. Gila. Effcient debugging in
a formal verification environment. Int J Softw Tools Technol Transfer, 4:335-348,
2003.

[64] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J.
ACM, 42(4):857-904, 1995.

[65] P. COUSOT and R. COUSOT. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In ACM
Symposium of Programming Language, pages 238-252, 2003.

[66] J.M. Couvreur. On-the-fly verification of linear temporal logic. In FM, LNCS, vol.
1708, pages 253-271. Springer, Heidelberg, 1999.

[67] Luckham D. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2002.

[68] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. The
VLDB Journal, 7:864-875, 2007.

[69] B. Damman, T. Han, and J.P. Katoen. Regular expressions for pctl counterexamples.
In Quantitative Evaluation of Systems(QEST), pages 179-188, 2008.

[70] L. de Alfaro, T.A. Henzinger, and F. Mang. Detecting errors before reaching them.
In CAV, LNCS, vol. 2725, pages 186-201. Springer, Berlin, Heidelberg, 2000.

[71] H. Debbi and M. Bourahla. Generating diagnoses for probabilistic model checking
using causality. Journal of Computing and Information Technology, 21(1):13-22,
2013.

[72] H. Debbi and M. Bourahla. Causal analysis of probabilistic counterexamples. In
Eleventh ACM-IEEE International Conference on Formal Methods and Models for
Codesign (Memocode), pages 77-86, 2013.

[73] H. Debbi and M. Bourahla. Verification approach for probabilistic complex event
processing (cep) applications. In The First International Symposium on Informatics
and its Applications, M’sila, 2014.

[74] H. Debbi, M. Bourahla, and A. Debbi. Medical treatment analysisusing probabilistic
model checking. International Journal of Biomedical Engineering and Technology,
12(4):346-359, 2013.

[75] H. Debbi, B. Lounas, and A. Bentaleb. Real-time alert correlation approach based
on complex event processing. In International Conference on Systems and Procesing
Information, 2013.

[76] B.T Denton, K. Murat, N.D. Shah, S.C. Bryant, and S.A. Smith. Optimizing the start
time of statin therapy for patients with diabetes. Medical Decision Making, 29(03):
351-367, 2009.

[77] B.T.O. Denton, A. Holder, and E.K. Lee. Medical decision making: open research
challenges. IIE Transactions on Healthcare Systems Engineering, 1(03):161-167,
2011.

104

References

[78]

[81]

[82]

[83]

[86]

[87]

[88]
[89]

[90]

EJ. Diez, M.A. Palacios, and M. Arias. Mdps in medicine: Opportunities and chal-
lenges. In IJCAI Workshop on Decision Making in Partially Observable, Uncertain
Worlds: Exploring Insights from Multiple Communities, 2011.

M. Duot, L. Fribourg, and T. Herault et al. Probabilistic model checking of the
csma/cd protocol using prism and apme. In the Fouth International Workshop on
Automated Verification of Critical Systems (AVoCS 2004), ENTCS, pages 195-214,
2004.

S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking
in the validation of communication protocols. [International Journal on Software
Tools for Technology Transfer, 5(2):247-267, 2004.

T. Eiter and T. Lukasiewicz. Complexity results for structure-based causality. Artifi-
cial Intelligence, 142(1):53—-89, 2002.

H. Elghazel, V. Deslandres, K. Kallel, and A. Dussauchoy. Clinical pathway cluster-
ing using graph b-colouring and markov models. International Journal of Biomedical
Engineering and Technology, 3(1):156-172, 2010.

E.A. Emerson and J.Y. Halpern. Decision procedures and expressiveness in the tem-
poral logic of branching time. In STOC 82: Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 169—180. ACM Press, 1982.

E.A. Emerson and C.L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings of the First Annual Symposium of Logic in
Computer Science.

A. Engels, L. Feijs, and S. Mauw. Test generation for intelligent networks using
model checking. In Third International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems. (TACAS97), LNCS, vol. 1217, pages 384—398.
Springer, Berlin, Heidelberg, 1997.

A. Engels, L. Feijs, and S. Mauw. Test generation for intelligent networks using
model checking. In Third International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems(TACAS), LNCS, vol. 1217, pages 384-398.
Springer, Berlin, Heidelberg, 2010.

A. Ericsson, P. Pettersson, M. Berndtsson, and M.Seirio. seamless formal verification
of complex event processing applications. In International conference on Distributed
Event Based Systems (DEBS), pages 50-61, 2007.

O. Etzion. Event Processing in Action. MANNING, 2010.

G. Fey and R. Drechsler. Finding good counterexamples to aid design verification. In
First ACM and IEEE International Conference on Formal Methods and Models for
Co-Design (MEMOCODEOQ3), pages 51-52, 2003.

F. Fischer and S. Leue. Causality checking for complex system models. In Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI), LNCS, vol. 7737, pages
248-276. Springer, Berlin, Heidelberg, 2013.

References 105

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic cycle-
detection algorithm. In TACAS 2001, LNCS, vol. 2031, pages 420-434. Springer,
Berlin, Heidelberg, 2001.

G. Fraser. Automated Software Testing with Model Checkers. PhD thesis, IST -
Institute for Software Technology, 2007.

G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers. Journal of
Software Testing, Verification and Reliability, 19(3):215-261, 2009.

A. Gargantini and C. Heitmeyer. Using model checking to generate tests from re-
quirements ments specifications. In ESEC/FSE99: 7th European Software Engineer-
ing Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, LNCS, vol. 1687, pages 146—162. Springer, Berlin,
Heidelberg, 1999.

A. Gargantini, E. Riccobene, and S. Rinzivillo. Using spin to generate tests from
asm specifications. In Abstract State Machines 2003. Advances in Theory and Prac-
tice: 10th International Workshop, ASM, LNCS, vol. 2589, pages 263-277. Springer,
Berlin, Heidelberg, 2003.

P. Gastin and P. Moro. Minimal counterexample generation for spin. In /4th In-
ternational SPIN Workshop 2007, LNCS, vol. 4595, pages 24-38. Springer, Berlin,
Heidelberg, 2007.

P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexample in spin. In
SPIN 2004, LNCS, vol. 2989, pages 92—-108. Springer, Berlin, Heidelberg, 2004.

M.R. Gold, J.E. Siegel, L.B. Russell, and M.C. Weinstein. Cost Effectiveness in
Health and Medicine. Oxford University Press, 1996.

S. GRAF and H. ANDSADI. Construction of abstract state graphs with pvs. In CAV,
LNCS, vol. 1254, pages 72-83. Springer, Berlin, Heidelberg, 1997.

A. Groce. Error explanation with distance metrics. In Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), pages 108—122, 2004.

A. Groce and W. Visser. What went wrong: Explaining counterexamples. In SPIN
Workshop on Model Checking of Software, pages 121-135, 2003.

A.D Groce. Error Explanation and Fault Localization with Distance Metrics. PhD
thesis, School of Computer Science Carnegie Mellon University, 2005.

L. Guo, A. Roychoudhury, and T. Wang. Accurately choosing execution runs for soft-
ware fault localization. In 15th international conference on Compiler Construction,
LNCS, vol. 3923, pages 80-95. Springer, Berlin, Heidelberg, 2006.

J. Halpern and J. Pearl. Causes and explanations: A structural-model approach part
i: Causes. In 17th UAI, pages 194-202, 2001.

T. Han and J.P. Katoen. Counterexamples generation in probabilistic model checking.
IEEFE Trans. on Software Engineering, 35(2):72-86, 2009.

106

References

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

H. Hansen and J. Geldenhuys. Cheap and small counterexamples. In Software En-
gineering and Formal Methods, SEFM 08, pages 53—-62. IEEE Computer Society
Press, 2008.

H. Hansen and A. Kervinen. Minimal counterexamples in o(n log n) memory and o(n
2) time. In ACDC 2006, pages 131-142. IEEE Computer Society Press, 2006.

H. Hansson and B. Jonsson. Logic for reasoning about time and reliability. Formal
aspects of Computing, 6(5):512-535, 1994.

M. Hauskrecht and H. Fraser. Planning treatment of ischemic heart disease with
partially observable markov decision processes. Artificial Intelligence in Medicine,
18(3):221-244, 2000.

J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O.Tymchyshyn. Probabilistic
model checking of complex biological pathways. Theoretical Computer Science, 391
(3):239-257, 2008.

M. Heimdahl, S. Rayadurgam, and W. Visser. Specification centered testing. In
Second International Workshop on Automates Program Analysis, Testing and Verifi-
cation, 2000.

T. Herault, R. Lassaigne, and S. Peyronnet. Apmc 3.0: Approximate verification of
discrete and continuous time markov chains. In Third International Conference on
the Quantitative Evaluaiton of Systems (QEST 2006), pages 129—-130, 2006.

H. Hermanns, B. Wachter, and L. Zhang. Probabilistic cegar. In Computer Aided
Verification (CAV), LNCS, vol. 5123, pages 162—175. Springer, Berlin, Heidelberg,
2008.

A. Hilal and J. Gaylor. Bioartificial liver: review of science requirements and tech-
nology. World Review of Science, Technology and Sustainable Development, 3(1):
80-97, 2006.

A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for automatic
verification of probabilistic systems. In TACAS, LNCS, vol. 3920, pages 441-444.
Springer, Berlin, Heidelberg, 2006.

R. Hojati, H. Touati, R. P. Kurshan, and R. K. Brayton. Effcient -regular language
containment. In Computer Aided Verification, LNCS, vol. 1708, pages 371-382.
Springer, Berlin, Heidelberg, 1992.

R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of designs using
language containment and fair ctl. In Fifth Conference on Computer Aided Verifica-
tion (CAV 93), LNCS, vol. 697, pages 41-58. Springer, Berlin, Heidelberg, 1993.

R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of designs using
language containment and fair ctl. In CAV 93, LNCS, vol. 697, pages 41-58. Springer,
Berlin, Heidelberg, 1993.

G. Holzmann, D. Peled, and M. Yannakakis. On nested depth
first search. In SPIN’96, 1996.

References 107

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

H. Seok Hong and I. Lee. Automatic test generation from specifications for con-
trolflow and data-flow coverage criteria. In International Conference on Software
Engineering (ICSE), 2003.

R.A. Howard. Dynamic Programming andMarkov Processes. MIT Press, Cambridge,
1960.

D. Hume. A treatise of human nature. 1739.

M. Janota, R. Grigore, and J. Marques-Silva. Counterexample guided abstraction
refinement algorithm for propositional circumscription. In JELIA’10 Proceedings of
the 12th European conference on Logics in artificial intelligence, LNCS, vol. 6341,
pages 195-207. Springer, Berlin, Heidelberg, 2010.

N. Jansen, E. Abraham, M. Volk, R. Wilmer, J.P Katoen, and B. Becker. The comics
tool - computing minimal counterexamples for dtmcs. In ATVA, LNCS, vol. 7561,
pages 249-253. Springer, Berlin, Heidelberg, 2012.

H. Jin, K. Ravi, and F.Somenzi. Fate and free will in error traces. International
Journal on Software Tools for Technology Transfer, 6(2):102-116, 2004.

K. Johnson, S. Reed, and R. Calinescu. Specification and quantitative analysis of
probabilistic cloud deployment patterns. In HVC 2011, LNCS, pages 145-159.
Springer-Verlag Berlin Heidelberg, 2011.

S. Kashyap and V.K. Garg. Producing short counterexamples using crucial events. In
CAV 2008, LNCS, vol. 5123, pages 491-503. Springer, Berlin, Heidelberg, 2008.

J.-P. Katoen, M. Khattri, and I. S. Zapreev. A markov reward model checker. In
QEST, pages 243-244, 2005.

D. Kaufman, A. Schaefer, and M. Roberts. Living-donor liver transplantation timing
under ambiguous health state transition probabilities. In MSOM Annual Conference,
2011.

Y. Kesten, A. Pnueli, and L. o. Raviv. Algorithmic verification of linear temporal
logic specifications. In International Colloquium on Automata, Languages, and Pro-
gramming (ICALP-98),, LNCS, vol. 1443, pages 1-16. Springer, Berlin, Heidelberg,
1998.

S. Kikuchi and Y. Matsumoto. Performance modeling of concurrent live migration
operations in cloud computing systems using prism probabilistic model checker. In
4th Intl. Conf. on Cloud Computing (2011), pages 49-56, 2011.

D. Kroening, A. Groce, and E. Clarke. Counterexample guided abstraction refine-
ment via program execution. In 6th International Conference on Formal Engineering
Methods (ICFEM), LNCS, vol. 3308, pages 224-238. Springer, Berlin, Heidelberg,
2004.

N. Kuma, V. Kumar, and M. Viswanathan. On the complexity of error explanation.
In Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS, vol.
3385, pages 448—-464. Springer, Berlin, Heidelberg, 2005.

108

References

[134]

[135]

[136]

[137]

[138]

[139]

[140]
[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

T. Kumazawa and T. Tamai. Counterexample-based error localization of behavior
models. In NASA Formal Methods, pages 222-236, 2011.

M. Kuntz, F. Leitner-Fischer, and S. Leue. From probabilistic counterexamples via
causality to fault trees. In Computer Safety, Reliability, and Security, LNCS, vol.
6894, pages 71-84. Springer, Berlin, Heidelberg, 2011.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, Elsevier, 282(1):101-150, 2002.

M. Kwiatkowska, G. Norman, and D. Parker. Using probabilistic model checking
in systems biology. ACM Sigmetrics Performance Evaluation Review, 35(4):14-21,
2008.

A. Laha. Rap: A conceptual business intelligence framework. In /st Bangalore
Annual Compute Conference, 1994.

F. Leitner-Fischer and S. Leue. On the synergy of probabilistic causality computation
and causality checking. In SPIN 2013, LNCS, vol. 7976, pages 246-263. Springer-
Verlag, Berlin, Heidelberg, 2013.

D. Lewis. Causation. Journal of Philosophy, 70:556-567, 1973.

Z. Li and T.Ge. Online windowed subsequence matching over probabilistic se-
quences. In ACM SIGMOD international conference on Management of data, pages
277-288, 2012.

D.E. LONG. Model checking, abstraction and compositional verification. PhD thesis,
School of Computer Science, Carnegie Mellon University, 2005.

K.L. McMillan and L.D. Zuck. Abstract counterexamples for non-disjunctive ab-
stractions. In Reachability Problems, LNCS, vol. 5797, pages 176—188. Springer,
Berlin, Heidelberg, 2009.

J. Muppala, G. Ciardo, and K. Trivedi. stochastic reward nets for reliability predic-
tion. Communications in Reliability Maintainability and Serviceability, 1(5), 1994.

T. Nguyen, H. Guo, and R. Naguib. A survey of industrial experiences for the uk
healthcare software development sector. International Journal of Biomedical Engi-
neering and Technology, 1(3):329-341, 2008.

T. Nopper, C. Scholl, and B. Becker. Computation of minimal counterexamples by
using black box techniques and symbolic methods. In Computer-Aided Design (IC-
CAD), pages 273-280. IEEE Computer Society Press, 2007.

B. Pandey and R.B. Mishra. Data-mining models for the diagnosis of emg-based
neuromuscular diseases. International Journal of Biomedical Engineering and Tech-

nology, 6(2):109-128, 2011.

T. Pronk, E. de Vink, D. Bosnacki, and T. Breit. Stochastic modeling of codon bias

with prism. In 3rd Int. Workshop Methods and Tools for Coordinating Concurrent,
Distributed and Mobile Systems (MTCoord 2007), pages 1-15, 2007.

References 109

[149] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault localiza-
tion using potential invariants. In AADEBUG 2003, Fifth International Workshop on
Automated and Algorithmic Debugging, pages 273-276, 2003.

[150] E. Rabinovich, O. Etzion, and S. Ruah. Analyzing the behavior of event processing
applications. In the Fourth ACM International Conference on Distributed Event-
Based Systems, pages 223-234, 2010.

[151] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking. In
TACAS, LNCS, vol. 2988, pages 31-45. Springer, Berlin, Heidelberg, 2004.

[152] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. In Third International Conference, FMCAD 2000,
LNCS, vol. 1954, pages 162—179. Springer, Berlin, Heidelberg, 2000.

[153] K. Ravi, R. Bloem, and F. Somenzi. A note on on-the-fly verification algorithms. In
TACAS 2005, LNCS, vol. 3440, pages 174—-190. Springer, Berlin, Heidelberg, 2005.

[154] M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In ASE,
pages 30-39, 2003.

[155] M.S. Roberts, D.C. Angus, C.L. Bryce, Z. Valenta, and L. Weissfeld. Survival af-
ter liver transplantation in the united states: a disease-specific analysis of the unos
database. Liver Transplantation, 10(7):886—897, 2004.

[156] A.J. Schaefer, M.D. Bailey, S.M. Shechter, and M.S. Roberts. Modeling medical
treatment using markov decision processes. International Series in Operations Re-
search and Management Science, 70:593-612, 2005.

[157] M. Schmalz, D. Varacca, and H. Volzer. Counterexamples in probabilistic 1tl model
checking for markov chains. In International Conference on Concurrency Theory
(CONCUR), LNCS, vol. 5710, pages 787-602. Springer, Berlin, Heidelberg, 2009.

[158] V. Schuppan and A. Biere. Shortest counterexamples for symbolic model checking
of Itl with past. In [1th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, vol. 3440, pages 493-509. Springer,
Berlin, Heidelberg, 2005.

[159] S. Sen. Business activity monitoring based on action-ready dashboards and response
loop. In Ist International workshop on Complex Event Processing for the Future
Internet (iCEP), 2008.

[160] S. Sewall. Correlation and causation. Journal of Agricultural Research, 20:557,
1921.

[161] S. Sfakianakis, M. Blazantonakis, I. Dimou, M. Zervakis, M.Tsiknakis, G. Potamias,
D. Kafetzopoulos, and D. Lowe. Decision support based on genomics: integration
of data and knowledge-driven reasoning. International Journal of Biomedical Engi-
neering and Technology, 3(3), 2010.

110 References

[162] S.M. Shechter, M.D. Bailey, A.J. Schaefer, and M.S. Roberts. The optimal time to
initiate hiv therapy under ordered health states. Operations Research, 56(1):20-33,
2008.

[163] S. Shen and S. Li Y. Qin. Localizing errors in counterexample with iteratively wit-
ness searching. In ATVA 2004, LNCS, vol. 3299, pages 459-464. Springer, Berlin,
Heidelberg, 2004.

[164] S. Shen, Y. Qin, and S. Li. Localizing errors in counterexample with iteratively
witness searching. In ATVA, LNCS, vol. 3299, pages 456—469. Springer, Berlin,
Heidelberg, 2004.

[165] S. Shen, Y. Qin, and S. Li. Bug localization of hardware system with control flow
distance minimization. In /3th IEEE International Workshop on Logic and Synthesis
(IWLS 2004), 2004.

[166] S. Shen, Y. Qin, and S. Li. Minimizing counterexample with unit core extraction and
incremental sat. In Verification, Model Checking, and Abstract Interpretation, LNCS,
vol. 3385, pages 298-312. Springer, Berlin, Heidelberg, 2005.

[167] S.-Y. Shen, Y. Qin, and S. Li. A fast counterexample minimization approach with
refutation analysis and incremental sat. In Conference on Asia South Pacific Design
Automation, pages 451-454, 2005.

[168] F.A. Sonnenberg and J.R. Beck. Markov models in medical decision making: a
practical guide. Medical Decision Making, 13(4):322-339, 1993.

[169] J. Tan, G.S. Avrunin, and S. Leue. Heuristic-guided counterexample search in flavers.
In 12th ACM SIGSOFT international symposium on Foundations of software engi-
neering, pages 201-210, 2004.

[170] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Com-
puting, 1(2):146-160, 1972.

[171] F. Tip and T.B. Dinesh. A slicing-based approach for locating type errors. ACM
Transactions on Software Engineering and Methodologyl, 10(1):5-55, 2001.

[172] H.J. Touati, R. K. Brayton, and R. P. Kurshan. Testing language containment for @
automata using bdds. In International Workshop on Formal Methods in VLSI Design,
pages 371-382, 1991.

[173] A. Valmari and J. Geldenhuys. Tarjans algorithm makes on-the-fly 1tl verification
more effcient. In Jensen, K., Podelski, A. (eds.) TACAS, LNCS, vol. 2988, pages
205-219. Springer, Berlin, Heidelberg, 2004.

[174] M. Y. Vardi. Verification of probabilistic concurrent

finite-state programs. In the 26th Annual Symposium on Foundations of Computer
Science (FOCS 85), 1985.

[175] M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms for the
verification of temporal properties. Formal Methods in System Design, 1(2):275—
288, 1992.

References 111

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Whodunit? causal analysis for coun-
terexamples. In 4th International Symposium, ATVA, LNCS, vol. 4218, pages 82-95.
Springer, Berlin, Heidelberg, 2006.

S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Complex event processing over un-
certain data,. In second international conference on Distributed event-based systems,

pages 253-264, 2008.

R. Wimmer, B. Braitling, and B. Becker. Counterexample generation for discrete-
time markov chains using bounded model checking. In Verification, Model Check-
ing, and Abstract Interpretation, LNCS, vol. 5403, pages 366—-380. Springer, Berlin,
Heidelberg, 2009.

R. Wimmer, N. Jansen, E. Abraham, B. Becker, and J.P. Katoen. Minimal critical
subsystems for discrete-time markov models. In TACAS, LNCS, vol. 7214, pages
299-314. Springer, Berlin, Heidelberg, 2012.

R. Wimmer, N. Jansen, and A. Vorpahl. High-level counterexamples for probabilistic
automata. In Quantitative Evaluation of Systems (QEST), LNCS, vol. 8054, pages
39-54. Springer, Berlin, Heidelberg, 2013.

A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components. In
International Conference on ComputerAided Design, pages 3740, 1999.

W. Yao, C. Chu, and Z. Li. ?leveraging complex event processing for smart hospitals
using rfid. Journal of Network and Computer Applications, 34(3):799-810, 1994.

H. Younes. A statistical model checker. In 7th International Conference on Computer
Aided Verification (CAV’05), LNCS, pages 429—433. Springer, 2005.

C. Zang and Y. Fan. Complex event processing in enterprise information systems
based on rfid. Journal Enterprise Information Systems, 1(1):3-23, 2007.

A. Zeller. Yesterday, my program worked. today, is does not. why? In ACM Sympo-
sium on the Foundations of Software Engineering, pages 253-267, 1999.

A. Zeller. Isolating cause-effect chains for computer programs. In ACM Symposium
on the Foundations of Software Engineering, pages 1-10, 2002.

J. Zhang, B.T. Denton, and H. Balasubramanian. Optimization of psa screening poli-
cies: a comparison of the patient and societal perspectives. Medical Decision Making,
32(2):337-349, 1993.

Index

Biichi automaton, 9
Actual cause, 17, 41

Biichi automaton, 24
Blame, 3, 19, 48
Bounded Model Checking , 36

Causality, 3

Causality model, 17, 41

Cause probability, 42

Complex Event Processing (CEP), 74

Computation Tree Logic (CTL), 10

Continuous Stochastic Logic (CSL), 16

Continuous Time Markov Chain
(CTMO), 13

Counterexample, 1

Counterexample analysis, 2

Counterexample-Guided Abstraction
Refinement (CEGAR), 29

Counterfactual, 16

Coverage, 30

Critical subsystem, 36

Criticality, 41

Cylinder set, 13

Debugging, 2, 25
Degree of blame, 49

Degree of responsibility, 42

DiPro, 4

Discrete-Time Markov Chain (DTMC),
13

Endogenous variables, 17
Exogenous variables, 17

Explicit state model checking, 22

Fault tree, 37
Finite path, 14

Formal methods, 1

Guarded command language, 38
Infinite path, 14

Kripke structure, 8, 9

Linear Temporal Logic (LTL), 1,9
Liveness property, 8

living-donor liver transplantation, 87

Markov Decision Process (MDP), 14
Medical Decision, 82

Medical treatment, 4

Minimal counterexample, 24
Minimality condition, 37

Model checking, 1, 7

114

Index

Most indicative probabilistic

counterexample, 39
Most responsible cause, 43
MRMC, 36

over-approximation, 44

Path-based counterexamples, 36

PRISM, 4, 85

Probabilistic causality model, 42

Probabilistic CEP, 4

Probabilistic Complex Event Processing
(Probabilistic CEP), 74, 96

Probabilistic Computation Tree Logic
(PCTL), 14

Probabilistic counterexample, 2

Probabilistic model checking, 2

Probabilistic Timed Automata (PTA), 77

Probabilistic Timed Computation Tree
Logic (PTCTL), 77

PROMELA, 38

Regression, 3
regular expressions, 36

Responsibility, 3, 18

Safety property, 8

Scheduler, 46

Set of finite paths, 39

Short counterexample, 23

Specification, 1

Strongest evidences, 36

Strongest path, 39

Strongly Connected Component (SCC),
1,11, 23

Symbolic model checking, 22

Temporal logic, 8
Test cases, 30

Trap properties, 30

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline
	1.4 Own Publications

	2 Definitions and Theoretical Background
	2.1 Model Checking
	2.1.1 Introduction
	2.1.2 Preliminaries and Definitions

	2.2 Probabilistic Model Checking
	2.2.1 Introduction
	2.2.2 Preliminaries and Definitions

	2.3 Causality
	2.3.1 Introduction
	2.3.2 Preliminaries and Definitions

	3 Counterexamples in Model Checking
	3.1 Introduction
	3.2 Cycle Detection Algorithms
	3.3 Finding Short Counterexamples
	3.3.1 Explicit Algorithms
	3.3.2 Symbolic Algorithms

	3.4 Counterexamples for Debugging
	3.4.1 Computing the Minimal Number of Changes
	3.4.2 Comparing Counterexamples with Successful Runs

	3.5 Counterexample Guided Abstraction Refinement (CEGAR)
	3.6 Counterexamples for Test Cases Generation
	3.7 Tools
	3.8 Conclusion

	4 Causal Analysis of Probabilistic Counterexamples
	4.1 Introduction and Related Works
	4.2 Probabilistic Counterexamples
	4.3 Causality and Responsibility for Probabilistic Counterexamples
	4.4 Algorithm for Computing Causes Responsibilities
	4.5 Probabilistic Counterexamples for MDPs
	4.6 Blame for Counterexamples of MDPs
	4.7 Algorithm for Computing Blame
	4.8 Experimental Results
	4.8.1 Algorithm 1
	4.8.2 Algorithm 2

	4.9 Conclusion

	5 Analysing Probabilistic Counterexamples using Regression
	5.1 Introduction
	5.2 Regression Analysis
	5.3 Diagnostic Model
	5.4 Algorithm for Generating dataset
	5.5 Illustrative Example
	5.6 Experimental Results
	5.6.1 Embedded Control System
	5.6.2 Polling Server System
	5.6.3 Comparison with Previous Method

	5.7 Conclusion

	6 Analysing Probabilistic Systems using Probabilistic Model Checking
	6.1 Introduction
	6.2 Analysing Probabilistic Complex Event Processing (CEP) Applications
	6.2.1 Preliminaries and Definitions
	6.2.2 CEP Verification Approach

	6.3 Medical Treatment Analysis
	6.3.1 MDPs for Medical Treatment Decision
	6.3.2 Preliminaries and Definitions
	6.3.3 Case Study

	6.4 Conclusion

	7 Conclusions
	References

